|
from ..torch_core import * |
|
from ..basic_data import * |
|
from ..basic_train import * |
|
from ..train import ClassificationInterpretation |
|
import matplotlib.cm as cm |
|
|
|
__all__ = ['TextClassificationInterpretation'] |
|
|
|
def value2rgba(x:float, cmap:Callable=cm.RdYlGn, alpha_mult:float=1.0)->Tuple: |
|
"Convert a value `x` from 0 to 1 (inclusive) to an RGBA tuple according to `cmap` times transparency `alpha_mult`." |
|
c = cmap(x) |
|
rgb = (np.array(c[:-1]) * 255).astype(int) |
|
a = c[-1] * alpha_mult |
|
return tuple(rgb.tolist() + [a]) |
|
|
|
def piece_attn_html(pieces:List[str], attns:List[float], sep:str=' ', **kwargs)->str: |
|
html_code,spans = ['<span style="font-family: monospace;">'], [] |
|
for p, a in zip(pieces, attns): |
|
p = html.escape(p) |
|
c = str(value2rgba(a, alpha_mult=0.5, **kwargs)) |
|
spans.append(f'<span title="{a:.3f}" style="background-color: rgba{c};">{p}</span>') |
|
html_code.append(sep.join(spans)) |
|
html_code.append('</span>') |
|
return ''.join(html_code) |
|
|
|
def show_piece_attn(*args, **kwargs): |
|
from IPython.display import display, HTML |
|
display(HTML(piece_attn_html(*args, **kwargs))) |
|
|
|
def _eval_dropouts(mod): |
|
module_name = mod.__class__.__name__ |
|
if 'Dropout' in module_name or 'BatchNorm' in module_name: mod.training = False |
|
for module in mod.children(): _eval_dropouts(module) |
|
|
|
class TextClassificationInterpretation(ClassificationInterpretation): |
|
"""Provides an interpretation of classification based on input sensitivity. |
|
This was designed for AWD-LSTM only for the moment, because Transformer already has its own attentional model. |
|
""" |
|
|
|
def __init__(self, learn: Learner, preds: Tensor, y_true: Tensor, losses: Tensor, ds_type: DatasetType = DatasetType.Valid): |
|
super(TextClassificationInterpretation, self).__init__(learn,preds,y_true,losses,ds_type) |
|
self.model = learn.model |
|
|
|
@classmethod |
|
def from_learner(cls, learn: Learner, ds_type:DatasetType=DatasetType.Valid, activ:nn.Module=None): |
|
"Gets preds, y_true, losses to construct base class from a learner" |
|
preds_res = learn.get_preds(ds_type=ds_type, activ=activ, with_loss=True, ordered=True) |
|
return cls(learn, *preds_res) |
|
|
|
def intrinsic_attention(self, text:str, class_id:int=None): |
|
"""Calculate the intrinsic attention of the input w.r.t to an output `class_id`, or the classification given by the model if `None`. |
|
For reference, see the Sequential Jacobian session at https://www.cs.toronto.edu/~graves/preprint.pdf |
|
""" |
|
self.model.train() |
|
_eval_dropouts(self.model) |
|
self.model.zero_grad() |
|
self.model.reset() |
|
ids = self.data.one_item(text)[0] |
|
emb = self.model[0].module.encoder(ids).detach().requires_grad_(True) |
|
lstm_output = self.model[0].module(emb, from_embeddings=True) |
|
self.model.eval() |
|
cl = self.model[1](lstm_output + (torch.zeros_like(ids).byte(),))[0].softmax(dim=-1) |
|
if class_id is None: class_id = cl.argmax() |
|
cl[0][class_id].backward() |
|
attn = emb.grad.squeeze().abs().sum(dim=-1) |
|
attn /= attn.max() |
|
tokens = self.data.single_ds.reconstruct(ids[0]) |
|
return tokens, attn |
|
|
|
def html_intrinsic_attention(self, text:str, class_id:int=None, **kwargs)->str: |
|
text, attn = self.intrinsic_attention(text, class_id) |
|
return piece_attn_html(text.text.split(), to_np(attn), **kwargs) |
|
|
|
def show_intrinsic_attention(self, text:str, class_id:int=None, **kwargs)->None: |
|
text, attn = self.intrinsic_attention(text, class_id) |
|
show_piece_attn(text.text.split(), to_np(attn), **kwargs) |
|
|
|
def show_top_losses(self, k:int, max_len:int=70)->None: |
|
""" |
|
Create a tabulation showing the first `k` texts in top_losses along with their prediction, actual,loss, and probability of |
|
actual class. `max_len` is the maximum number of tokens displayed. |
|
""" |
|
from IPython.display import display, HTML |
|
items = [] |
|
tl_val,tl_idx = self.top_losses() |
|
for i,idx in enumerate(tl_idx): |
|
if k <= 0: break |
|
k -= 1 |
|
tx,cl = self.data.dl(self.ds_type).dataset[idx] |
|
cl = cl.data |
|
classes = self.data.classes |
|
txt = ' '.join(tx.text.split(' ')[:max_len]) if max_len is not None else tx.text |
|
tmp = [txt, f'{classes[self.pred_class[idx]]}', f'{classes[cl]}', f'{self.losses[idx]:.2f}', |
|
f'{self.preds[idx][cl]:.2f}'] |
|
items.append(tmp) |
|
items = np.array(items) |
|
names = ['Text', 'Prediction', 'Actual', 'Loss', 'Probability'] |
|
df = pd.DataFrame({n:items[:,i] for i,n in enumerate(names)}, columns=names) |
|
with pd.option_context('display.max_colwidth', -1): |
|
display(HTML(df.to_html(index=False))) |
|
|