See axolotl config
axolotl version: 0.8.0.dev0
base_model: google/gemma-3-27b-it
# optionally might have model_type or tokenizer_type
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
strict: false
# huggingface repo
chat_template: gemma3
datasets:
- path: shisa-ai/paradox_test_set_200k_sharegpt-v2
type: chat_template
field_messages: conversations
message_property_mappings:
role: role
content: content
split: train[:25%]
val_set_size: 0.0
output_dir: ./outputs/ablation-121-gemma3.paradox.v2
sequence_len: 8196
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 6.53e-6
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: false
eager_attention: true
warmup_ratio: 0.1
evals_per_epoch:
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
saves_per_epoch: 0
save_total_limit: 1 # Only store a single checkpoint
outputs/ablation-121-gemma3.paradox.v2
This model is a fine-tuned version of google/gemma-3-27b-it on the shisa-ai/paradox_test_set_200k_sharegpt-v2 dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6.53e-06
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 48
- gradient_accumulation_steps: 2
- total_train_batch_size: 96
- total_eval_batch_size: 48
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 19
- num_epochs: 1.0
Training results
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support