0f3dy's picture
Update app.py
7edcae1 verified
import os
import gradio as gr
import requests
import pandas as pd
import time
import json
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class BasicAgent:
def __init__(self):
# Load metadata.jsonl
self.metadata = self._load_metadata()
print("BasicAgent initialized with metadata")
def _load_metadata(self):
"""Load metadata.jsonl, parsing each line as a JSON object."""
data = []
try:
with open("metadata.jsonl", 'r', encoding='utf-8') as f:
for line_number, line in enumerate(f, 1):
line = line.strip()
if not line:
continue
try:
obj = json.loads(line)
if isinstance(obj, dict):
data.append(obj)
else:
print(f"Skipping line {line_number}: not a dictionary")
except json.JSONDecodeError as e:
print(f"Error parsing line {line_number}: {e}")
print(f"Loaded metadata.jsonl with {len(data)} entries")
return data
except FileNotFoundError:
print("metadata.jsonl not found. Proceeding without metadata.")
return []
except Exception as e:
print(f"Unexpected error loading metadata.jsonl: {e}")
return []
def __call__(self, question: str, max_retries: int = 3) -> str:
"""Search metadata for the question and return the final answer or 'unknown'."""
print(f"Agent received question (first 50 chars): {question[:50]}...")
# Search metadata.jsonl for the question
for item in self.metadata:
if item.get("Question") == question:
final_answer = item.get("Final answer")
if final_answer:
print(f"Found answer in metadata.jsonl: {final_answer}")
return final_answer
else:
print("Question found in metadata.jsonl, but no final answer provided.")
# Fallback if question not found
print("Question not found in metadata.jsonl. Returning 'unknown'.")
return "unknown"
def run_and_submit_all(profile: gr.OAuthProfile | None, progress=gr.Progress()):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results with progress tracking.
"""
space_id = os.getenv("SPACE_ID")
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
progress(0, desc="Initializing agent...")
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
progress(0.1, desc="Fetching questions...")
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
total_questions = len(questions_data)
print(f"Running agent on {total_questions} questions...")
for i, item in enumerate(questions_data):
progress((0.1 + 0.8 * i / total_questions), desc=f"Processing question {i+1}/{total_questions}")
task_id = item.get("task_id")
question_text = item.get("question")
requires_file = item.get("requires_file", False)
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
print(f"Processing task {task_id} ({i+1}/{total_questions})")
try:
# Skip file handling since agent doesn't use files
if requires_file:
print(f"Task {task_id} requires file, but agent doesn't support file handling. Using question as is.")
submitted_answer = agent(question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
# Add small delay between requests
time.sleep(0.1)
except Exception as e:
error_msg = f"PROCESSING_ERROR: {e}"
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": error_msg})
if not answers_payload:
print("Agent did not produce any valid answers to submit.")
return "Agent did not produce any valid answers to submit. Check the results table for errors.", pd.DataFrame(results_log)
# 4. Prepare Submission
progress(0.9, desc="Submitting answers...")
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Processed: {len(results_log)} questions\n"
f"Successfully submitted: {len(answers_payload)} answers\n"
f"Model used: Metadata-based lookup\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
progress(1.0, desc="Complete!")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic.
2. Ensure metadata.jsonl is available with question-answer pairs.
3. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
4. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Agent Configuration:**
- 📄 Uses metadata.jsonl for answer lookup
- ❓ Returns 'unknown' for unmatched questions
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=8, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table],
show_progress=True
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup:
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Agent Evaluation...")
demo.launch(debug=True, share=False)