AutoML-MCP / app.py
daniel-was-taken's picture
Change to UI
131a1cc
import gradio as gr
import pandas as pd
import io
import pickle
import matplotlib.pyplot as plt
import seaborn as sns
from lazypredict.Supervised import LazyClassifier, LazyRegressor
from sklearn.model_selection import train_test_split
from ydata_profiling import ProfileReport
import tempfile
import requests
import json
from openai import OpenAI # Added for Nebius AI Studio LLM integration
def load_data(file_input):
"""Loads CSV data from either a local file upload or a public URL."""
if file_input is None:
return None, None
try:
if hasattr(file_input, 'name'):
file_path = file_input.name
with open(file_path, 'rb') as f:
file_bytes = f.read()
df = pd.read_csv(io.BytesIO(file_bytes))
elif isinstance(file_input, str) and file_input.startswith('http'):
response = requests.get(file_input)
response.raise_for_status()
df = pd.read_csv(io.StringIO(response.text))
else:
return None, None
# Extract column names here
column_names = ", ".join(df.columns.tolist())
return df, column_names
except Exception as e:
gr.Warning(f"Failed to load or parse data: {e}")
return None, None
def update_detected_columns_display(file_data, url_data):
"""
Detects and displays column names from the uploaded file or URL
as soon as the input changes, before the main analysis button is pressed.
"""
data_source = file_data if file_data is not None else url_data
if data_source is None:
return ""
df, column_names = load_data(data_source)
if column_names:
return column_names
else:
return "No columns detected or error loading file. Please check the file format."
def analyze_and_model(df, target_column):
"""Internal function to perform EDA, model training, and visualization."""
profile = ProfileReport(df, title="EDA Report", minimal=True)
with tempfile.NamedTemporaryFile(delete=False, suffix=".html") as temp_html:
profile.to_file(temp_html.name)
profile_path = temp_html.name
X = df.drop(columns=[target_column])
y = df[target_column]
task = "classification" if y.nunique() <= 10 else "regression"
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LazyClassifier(ignore_warnings=True, verbose=0) if task == "classification" else LazyRegressor(ignore_warnings=True, verbose=0)
models, _ = model.fit(X_train, X_test, y_train, y_test)
sort_metric = "Accuracy" if task == "classification" else "R-Squared"
best_model_name = models.sort_values(by=sort_metric, ascending=False).index[0] # Corrected indexing
best_model = model.models[best_model_name]
with tempfile.NamedTemporaryFile(delete=False, suffix=".pkl") as temp_pkl:
pickle.dump(best_model, temp_pkl)
pickle_path = temp_pkl.name
plt.figure(figsize=(10, 6))
plot_column = "Accuracy" if task == "classification" else "R-Squared"
sns.barplot(x=models[plot_column].head(10), y=models.head(10).index)
plt.title(f"Top 10 Models by {plot_column}")
plt.tight_layout()
with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_png:
plt.savefig(temp_png.name)
plot_path = temp_png.name
plt.close()
models_reset = models.reset_index().rename(columns={'index': 'Model'})
return profile, profile_path, task, models_reset, plot_path, pickle_path
def run_pipeline(data_source, target_column, nebius_api_key):
"""
This single function drives the entire application.
It's exposed as the primary tool for the MCP server.
:param data_source: A local file path (from gr.File) or a URL (from gr.Textbox).
:param target_column: The name of the target column for prediction.
:param nebius_api_key: The API key for Nebius AI Studio.
"""
# --- 1. Input Validation ---
if not data_source or not target_column:
error_msg = "Error: Data source and target column must be provided."
gr.Warning(error_msg)
return None, error_msg, None, None, None, "Please provide all inputs.", "No columns loaded."
gr.Info("Starting analysis...")
# --- 2. Data Loading ---
df, column_names = load_data(data_source)
if df is None:
return None, "Error: Could not load data.", None, None, None, None, "No columns loaded."
if target_column not in df.columns:
error_msg = f"Error: Target column '{target_column}' not found in the dataset. Available: {column_names}"
gr.Warning(error_msg)
return None, error_msg, None, None, None, None, column_names
# --- 3. Analysis and Modeling ---
profile, profile_path, task, models_df, plot_path, pickle_path = analyze_and_model(df, target_column)
# --- 4. Explanation with Nebius AI Studio LLM ---
best_model_name = models_df.iloc[0]['Model'] # Corrected indexing
llm_explanation = "AI explanation is unavailable. Please provide a Nebius AI Studio API key to enable this feature." # Generic fallback [1]
if nebius_api_key:
try:
client = OpenAI(
base_url="https://api.studio.nebius.com/v1/",
api_key=nebius_api_key
)
# Craft a prompt for the LLM [2]
prompt_text = f"Explain and Summarize the significance of the top performing model, '{best_model_name}', for a {task} task in a data analysis context. Keep the explanation concise and professional. Analyse the report: {profile}."
# Make the LLM call [2, 3]
response = client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct",
messages=[
{"role": "system", "content": "You are a helpful AI assistant that explains data science concepts. "},
{"role": "user", "content": prompt_text}
],
temperature=0.6,
max_tokens=512,
top_p=0.9,
extra_body={
"top_k": 50
}
)
message_content = response.to_json()
data = json.loads(message_content)
llm_explanation = data['choices'][0]['message']['content']
except Exception as e:
gr.Warning(f"Failed to get AI explanation: {e}. Please check your API key or try again later.")
llm_explanation = "An error occurred while fetching AI explanation. Please check your API key or try again later."
gr.Info("Analysis complete!")
gr.Info(f'Profile report saved to: {profile_path}')
return profile_path, task, models_df, plot_path, pickle_path, llm_explanation, column_names
# --- Gradio UI ---
with gr.Blocks(title="AutoML Trainer", theme=gr.themes.Soft()) as demo:
gr.Markdown("## 🤖 AutoML Trainer")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(label="Upload Local CSV File")
url_input = gr.Textbox(label="Or Enter Public CSV URL", placeholder="e.g., https://.../data.csv")
gr.Textbox(label="Sample CSV", value="https://raw.githubusercontent.com/daniel-was-taken/MCP_Project/refs/heads/master/collegePlace.csv")
target_column_input = gr.Textbox(label="Enter Target Column Name", placeholder="e.g., approved")
nebius_api_key_input = gr.Textbox(label="Nebius AI Studio API Key (Optional)", type="password", placeholder="Enter your API key for AI explanations")
run_button = gr.Button("Run Analysis & AutoML", variant="primary")
with gr.Column(scale=2):
column_names_output = gr.Textbox(label="Detected Columns", interactive=False, lines=2) # New Textbox for column names
task_output = gr.Textbox(label="Detected Task", interactive=False)
llm_output = gr.Markdown(label="AI Explanation")
metrics_output = gr.Dataframe(label="Model Performance Metrics")
with gr.Row():
vis_output = gr.Image(label="Top Models Comparison")
with gr.Column():
eda_output = gr.File(label="Download Full EDA Report")
model_output = gr.File(label="Download Best Model (.pkl)")
def process_inputs(file_data, url_data, target, api_key):
data_source = file_data if file_data is not None else url_data
return run_pipeline(data_source, target, api_key)
file_input.change(
fn=update_detected_columns_display,
inputs=[file_input, url_input],
outputs=column_names_output
)
url_input.change(
fn=update_detected_columns_display,
inputs=[file_input, url_input],
outputs=column_names_output
)
run_button.click(
fn=process_inputs,
inputs=[file_input, url_input, target_column_input, nebius_api_key_input],
outputs=[eda_output, task_output, metrics_output, vis_output, model_output, llm_output, column_names_output]
)
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_api=True,
inbrowser=True,
mcp_server=True
)