File size: 16,622 Bytes
1aa3ed3 91acbfe 46398ef 3bec4e3 46398ef eaef30e 46398ef 3bec4e3 1aa3ed3 eaef30e 3019682 eaef30e 3019682 eaef30e 3019682 eaef30e 3019682 eaef30e 3019682 eaef30e 3019682 609956c eaef30e 91acbfe d0422d9 eaef30e 3bec4e3 eaef30e 3bec4e3 eaef30e 1aa3ed3 eaef30e d0422d9 3bec4e3 46398ef eaef30e 1aa3ed3 eaef30e 3bec4e3 eaef30e 3bec4e3 d9e9840 64a9e0f d0422d9 a60f163 46398ef 91acbfe eaef30e eba4a14 eaef30e 3bec4e3 eaef30e 3bec4e3 91acbfe d0422d9 6d70b1d 3bec4e3 eaef30e 3bec4e3 eba4a14 20a9846 eba4a14 3bec4e3 eaef30e 20a9846 3bec4e3 eaef30e 3bec4e3 20a9846 eaef30e 20a9846 3bec4e3 eba4a14 eaef30e eba4a14 eaef30e eba4a14 eaef30e eba4a14 eaef30e eba4a14 eaef30e eba4a14 3bec4e3 20a9846 eba4a14 20a9846 3bec4e3 20a9846 eaef30e 20a9846 eba4a14 eaef30e eba4a14 eaef30e eba4a14 eaef30e eba4a14 3bec4e3 eba4a14 3bec4e3 eaef30e 3bec4e3 eaef30e 20a9846 eba4a14 eaef30e eba4a14 20a9846 609956c eaef30e 609956c eaef30e 609956c 20a9846 eaef30e 20a9846 eaef30e 20a9846 eaef30e 20a9846 3019682 eaef30e 20a9846 eba4a14 eaef30e 609956c eaef30e 20a9846 eaef30e 20a9846 eaef30e 20a9846 eaef30e 20a9846 eaef30e 20a9846 eba4a14 eaef30e eba4a14 eaef30e eba4a14 eaef30e eba4a14 20a9846 eaef30e 20a9846 eaef30e eba4a14 20a9846 eaef30e eba4a14 20a9846 eba4a14 eaef30e eba4a14 609956c eaef30e 3019682 609956c eaef30e eba4a14 eaef30e eba4a14 20a9846 3bec4e3 1aa3ed3 3bec4e3 20a9846 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
import gradio as gr
import torch
import torchaudio
from transformers import (
AutoModelForSpeechSeq2Seq,
AutoProcessor,
AutoModelForCTC,
AutoModel,
WhisperProcessor,
WhisperForConditionalGeneration,
)
import librosa
import numpy as np
from jiwer import wer, cer
import time
# Language configurations
LANGUAGE_CONFIGS = {
"Hindi (हिंदी)": {
"code": "hi",
"script": "Devanagari",
"models": ["AudioX-North", "IndicConformer", "MMS"]
},
"Gujarati (ગુજરાતી)": {
"code": "gu",
"script": "Gujarati",
"models": ["AudioX-North", "IndicConformer", "MMS"]
},
"Marathi (मराठी)": {
"code": "mr",
"script": "Devanagari",
"models": ["AudioX-North", "IndicConformer", "MMS"]
},
"Tamil (தமிழ்)": {
"code": "ta",
"script": "Tamil",
"models": ["AudioX-South", "IndicConformer", "MMS"]
},
"Telugu (తెలుగు)": {
"code": "te",
"script": "Telugu",
"models": ["AudioX-South", "IndicConformer", "MMS"]
},
"Kannada (ಕನ್ನಡ)": {
"code": "kn",
"script": "Kannada",
"models": ["AudioX-South", "IndicConformer", "MMS"]
},
"Malayalam (മലയാളം)": {
"code": "ml",
"script": "Malayalam",
"models": ["AudioX-South", "IndicConformer", "MMS"]
}
}
# Model configurations
MODEL_CONFIGS = {
"AudioX-North": {
"repo": "jiviai/audioX-north-v1",
"model_type": "whisper",
"description": "Supports Hindi, Gujarati, Marathi",
"languages": ["hi", "gu", "mr"]
},
"AudioX-South": {
"repo": "jiviai/audioX-south-v1",
"model_type": "whisper",
"description": "Supports Tamil, Telugu, Kannada, Malayalam",
"languages": ["ta", "te", "kn", "ml"]
},
"IndicConformer": {
"repo": "ai4bharat/indic-conformer-600m-multilingual",
"model_type": "ctc_rnnt",
"description": "Supports 22 Indian languages",
"trust_remote_code": True,
"languages": ["hi", "gu", "mr", "ta", "te", "kn", "ml", "bn", "pa", "or", "as", "ur"]
},
"MMS": {
"repo": "facebook/mms-1b-all",
"model_type": "ctc",
"description": "Supports 1,400+ languages",
"languages": ["hi", "gu", "mr", "ta", "te", "kn", "ml"]
},
}
# Load model and processor
def load_model_and_processor(model_name):
config = MODEL_CONFIGS[model_name]
repo = config["repo"]
model_type = config["model_type"]
trust_remote_code = config.get("trust_remote_code", False)
try:
if model_name == "IndicConformer":
print(f"Loading {model_name}...")
try:
model = AutoModel.from_pretrained(
repo,
trust_remote_code=True,
torch_dtype=torch.float32,
low_cpu_mem_usage=True
)
except Exception as e1:
print(f"Primary loading failed, trying fallback: {e1}")
model = AutoModel.from_pretrained(repo, trust_remote_code=True)
processor = None
return model, processor, model_type
elif model_name in ["AudioX-North", "AudioX-South"]:
# Use Whisper processor and model for AudioX variants
processor = WhisperProcessor.from_pretrained(repo)
model = WhisperForConditionalGeneration.from_pretrained(repo)
model.config.forced_decoder_ids = None
return model, processor, model_type
elif model_name == "MMS":
model = AutoModelForCTC.from_pretrained(repo)
processor = AutoProcessor.from_pretrained(repo)
return model, processor, model_type
except Exception as e:
return None, None, f"Error loading model: {str(e)}"
# Compute metrics (WER, CER, RTF)
def compute_metrics(reference, hypothesis, audio_duration, total_time):
if not reference or not hypothesis:
return None, None, None, None
try:
reference = reference.strip().lower()
hypothesis = hypothesis.strip().lower()
wer_score = wer(reference, hypothesis)
cer_score = cer(reference, hypothesis)
rtf = total_time / audio_duration if audio_duration > 0 else None
return wer_score, cer_score, rtf, total_time
except Exception:
return None, None, None, None
# Main transcription function
def transcribe_audio(audio_file, selected_language, selected_models, reference_text=""):
if not audio_file:
return "Please upload an audio file.", [], ""
if not selected_models:
return "Please select at least one model.", [], ""
if not selected_language:
return "Please select a language.", [], ""
# Get language info
lang_info = LANGUAGE_CONFIGS[selected_language]
lang_code = lang_info["code"]
table_data = []
try:
# Load and preprocess audio once
audio, sr = librosa.load(audio_file, sr=16000)
audio_duration = len(audio) / sr
for model_name in selected_models:
# Check if model supports the selected language
if model_name.replace("AudioX-", "AudioX-") not in lang_info["models"]:
table_data.append([
model_name,
f"Language {selected_language} not supported by this model",
"-", "-", "-", "-"
])
continue
model, processor, model_type = load_model_and_processor(model_name)
if isinstance(model_type, str) and model_type.startswith("Error"):
table_data.append([
model_name,
f"Error: {model_type}",
"-", "-", "-", "-"
])
continue
start_time = time.time()
try:
if model_name == "IndicConformer":
# AI4Bharat specific processing
wav = torch.from_numpy(audio).unsqueeze(0)
if torch.max(torch.abs(wav)) > 0:
wav = wav / torch.max(torch.abs(wav))
with torch.no_grad():
transcription = model(wav, lang_code, "rnnt")
if isinstance(transcription, list):
transcription = transcription[0] if transcription else ""
transcription = str(transcription).strip()
elif model_name in ["AudioX-North", "AudioX-South"]:
# AudioX Whisper-based processing
if sr != 16000:
audio = librosa.resample(audio, orig_sr=sr, target_sr=16000)
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
with torch.no_grad():
predicted_ids = model.generate(
input_features,
task="transcribe",
language=lang_code
)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
else: # MMS
# Standard CTC processing for MMS
inputs = processor(audio, sampling_rate=16000, return_tensors="pt")
with torch.no_grad():
input_values = inputs["input_values"]
logits = model(input_values).logits
predicted_ids = torch.argmax(logits, dim=-1)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
except Exception as e:
transcription = f"Processing error: {str(e)}"
total_time = time.time() - start_time
# Compute metrics
wer_score, cer_score, rtf = "-", "-", "-"
if reference_text and transcription and not transcription.startswith("Processing error"):
wer_val, cer_val, rtf_val, _ = compute_metrics(
reference_text, transcription, audio_duration, total_time
)
wer_score = f"{wer_val:.3f}" if wer_val is not None else "-"
cer_score = f"{cer_val:.3f}" if cer_val is not None else "-"
rtf = f"{rtf_val:.3f}" if rtf_val is not None else "-"
# Add row to table
table_data.append([
model_name,
transcription,
wer_score,
cer_score,
rtf,
f"{total_time:.2f}s"
])
# Create summary text
summary = f"**Language:** {selected_language} ({lang_code})\n"
summary += f"**Audio Duration:** {audio_duration:.2f}s\n"
summary += f"**Models Tested:** {len(selected_models)}\n"
if reference_text:
summary += f"**Reference Text:** {reference_text[:100]}{'...' if len(reference_text) > 100 else ''}\n"
# Create copyable text output
copyable_text = "MULTILINGUAL SPEECH-TO-TEXT BENCHMARK RESULTS\n" + "="*55 + "\n\n"
copyable_text += f"Language: {selected_language} ({lang_code})\n"
copyable_text += f"Script: {lang_info['script']}\n"
copyable_text += f"Audio Duration: {audio_duration:.2f}s\n"
copyable_text += f"Models Tested: {len(selected_models)}\n"
if reference_text:
copyable_text += f"Reference Text: {reference_text}\n"
copyable_text += "\n" + "-"*55 + "\n\n"
for i, row in enumerate(table_data):
copyable_text += f"MODEL {i+1}: {row[0]}\n"
copyable_text += f"Transcription: {row[1]}\n"
copyable_text += f"WER: {row[2]}\n"
copyable_text += f"CER: {row[3]}\n"
copyable_text += f"RTF: {row[4]}\n"
copyable_text += f"Time Taken: {row[5]}\n"
copyable_text += "\n" + "-"*35 + "\n\n"
return summary, table_data, copyable_text
except Exception as e:
error_msg = f"Error during transcription: {str(e)}"
return error_msg, [], error_msg
# Create Gradio interface
def create_interface():
language_choices = list(LANGUAGE_CONFIGS.keys())
with gr.Blocks(title="Multilingual Speech-to-Text Benchmark", css="""
.language-info { background: #f0f8ff; padding: 10px; border-radius: 5px; margin: 10px 0; }
.copy-area { font-family: monospace; font-size: 12px; }
""") as iface:
gr.Markdown("""
# 🌐 Multilingual Speech-to-Text Benchmark
Compare ASR models across **7 Indian Languages** with comprehensive metrics.
**Supported Languages:** Hindi, Gujarati, Marathi, Tamil, Telugu, Kannada, Malayalam
""")
with gr.Row():
with gr.Column(scale=1):
# Language selection
language_selection = gr.Dropdown(
choices=language_choices,
label="🗣️ Select Language",
value=language_choices[0],
interactive=True
)
audio_input = gr.Audio(
label="📹 Upload Audio File (16kHz recommended)",
type="filepath"
)
# Dynamic model selection based on language
model_selection = gr.CheckboxGroup(
choices=["AudioX-North", "IndicConformer", "MMS"],
label="🤖 Select Models",
value=["AudioX-North", "IndicConformer"],
interactive=True
)
reference_input = gr.Textbox(
label="📄 Reference Text (optional, paste supported)",
placeholder="Paste reference transcription here...",
lines=4,
interactive=True
)
submit_btn = gr.Button("🚀 Run Multilingual Benchmark", variant="primary", size="lg")
with gr.Column(scale=2):
summary_output = gr.Markdown(
label="📊 Summary",
value="Select language, upload audio file and choose models to begin..."
)
results_table = gr.Dataframe(
headers=["Model", "Transcription", "WER", "CER", "RTF", "Time"],
datatype=["str", "str", "str", "str", "str", "str"],
label="🏆 Results Comparison",
interactive=False,
wrap=True,
column_widths=[120, 350, 60, 60, 60, 80]
)
# Copyable results section
with gr.Group():
gr.Markdown("### 📋 Export Results")
copyable_output = gr.Textbox(
label="Copy-Paste Friendly Results",
lines=12,
max_lines=25,
show_copy_button=True,
interactive=False,
elem_classes="copy-area",
placeholder="Benchmark results will appear here..."
)
# Update model choices based on language selection
def update_model_choices(selected_language):
if not selected_language:
return gr.CheckboxGroup(choices=[], value=[])
lang_info = LANGUAGE_CONFIGS[selected_language]
available_models = lang_info["models"]
# Map display names
model_map = {
"AudioX-North": "AudioX-North",
"AudioX-South": "AudioX-South",
"IndicConformer": "IndicConformer",
"MMS": "MMS"
}
available_choices = [model_map[model] for model in available_models if model in model_map]
default_selection = available_choices[:2] if len(available_choices) >= 2 else available_choices
return gr.CheckboxGroup(choices=available_choices, value=default_selection)
# Connect language selection to model updates
language_selection.change(
fn=update_model_choices,
inputs=[language_selection],
outputs=[model_selection]
)
# Connect the main function
submit_btn.click(
fn=transcribe_audio,
inputs=[audio_input, language_selection, model_selection, reference_input],
outputs=[summary_output, results_table, copyable_output]
)
reference_input.submit(
fn=transcribe_audio,
inputs=[audio_input, language_selection, model_selection, reference_input],
outputs=[summary_output, results_table, copyable_output]
)
# Language information display
gr.Markdown("""
---
### 📤 Language & Model Support Matrix
| Language | Script | AudioX-North | AudioX-South | IndicConformer | MMS |
|----------|---------|-------------|-------------|---------------|-----|
| Hindi | Devanagari | ✅ | ❌ | ✅ | ✅ |
| Gujarati | Gujarati | ✅ | ❌ | ✅ | ✅ |
| Marathi | Devanagari | ✅ | ❌ | ✅ | ✅ |
| Tamil | Tamil | ❌ | ✅ | ✅ | ✅ |
| Telugu | Telugu | ❌ | ✅ | ✅ | ✅ |
| Kannada | Kannada | ❌ | ✅ | ✅ | ✅ |
| Malayalam | Malayalam | ❌ | ✅ | ✅ | ✅ |
### 💡 Tips:
- **Models auto-filter** based on selected language
- **Reference Text**: Enable WER/CER calculation by providing ground truth
- **Copy Results**: Export formatted results using the copy button
- **Best Performance**: Use AudioX models for their specialized languages
""")
return iface
if __name__ == "__main__":
iface = create_interface()
iface.launch(
share=False,
debug=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True
) |