Spaces:
Running
on
T4
Running
on
T4
| import os | |
| import torch | |
| from transformers import pipeline | |
| from transformers.pipelines.audio_utils import ffmpeg_read | |
| import gradio as gr | |
| MODEL_NAME = "FarmRadioInternational/luganda-whisper-asr" | |
| BATCH_SIZE = 8 | |
| device = 0 if torch.cuda.is_available() else "cpu" | |
| pipe = pipeline( | |
| task="automatic-speech-recognition", | |
| model=MODEL_NAME, | |
| chunk_length_s=30, | |
| device=device, | |
| token=os.getenv('HF_TOKEN'), | |
| ) | |
| def transcribe(inputs, task): | |
| if inputs is None: | |
| raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") | |
| text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"] | |
| return text | |
| demo = gr.Blocks() | |
| mic_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="microphone", type="filepath"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs="text", | |
| # layout="horizontal", | |
| theme="huggingface", | |
| title="Luganda Whisper Demo: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| allow_flagging="never", | |
| ) | |
| file_transcribe = gr.Interface( | |
| fn=transcribe, | |
| inputs=[ | |
| gr.Audio(sources="upload", label="Audio file", type="filepath"), | |
| gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), | |
| ], | |
| outputs="text", | |
| # layout="horizontal", | |
| theme="huggingface", | |
| title="Luganda Whisper Demo: Transcribe Audio", | |
| description=( | |
| "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
| f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to transcribe audio files" | |
| " of arbitrary length." | |
| ), | |
| examples=[ | |
| ["./ama_log-1514-E30_17.wav", "transcribe"], | |
| ["./ng_log-1614-E2_364.wav", "transcribe"], | |
| ["./New Recording.wav", "transcribe"], | |
| ["./New Recording 3.wav", "transcribe"], | |
| ], | |
| cache_examples=True, | |
| allow_flagging="never", | |
| ) | |
| with demo: | |
| gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"]) | |
| demo.queue(max_size=10) | |
| demo.launch() |