luganda-asr / app.py
Nelly-43's picture
Update app.py
99054f6 verified
import os
import torch
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import gradio as gr
MODEL_NAME = "FarmRadioInternational/luganda-whisper-asr"
BATCH_SIZE = 8
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
token=os.getenv('HF_TOKEN'),
)
def transcribe(inputs, task):
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)["text"]
return text
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="microphone", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
# layout="horizontal",
theme="huggingface",
title="Luganda Whisper Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
" of arbitrary length."
),
allow_flagging="never",
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources="upload", label="Audio file", type="filepath"),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
],
outputs="text",
# layout="horizontal",
theme="huggingface",
title="Luganda Whisper Demo: Transcribe Audio",
description=(
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the"
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and πŸ€— Transformers to transcribe audio files"
" of arbitrary length."
),
examples=[
["./ama_log-1514-E30_17.wav", "transcribe"],
["./ng_log-1614-E2_364.wav", "transcribe"],
["./New Recording.wav", "transcribe"],
["./New Recording 3.wav", "transcribe"],
],
cache_examples=True,
allow_flagging="never",
)
with demo:
gr.TabbedInterface([mic_transcribe, file_transcribe], ["Transcribe Microphone", "Transcribe Audio File"])
demo.queue(max_size=10)
demo.launch()