|
import matplotlib.pyplot as plt |
|
import matplotlib.colors as mcolors |
|
import numpy as np |
|
import cv2 |
|
|
|
def individual_channel_image(img_arr, channel= 'r', ax=None): |
|
img_arr = img_arr[:,:,0:3] |
|
|
|
if channel in ['r','red','Red']: |
|
plot_arr = img_arr[:,:,0] |
|
channel_name = 'Red' |
|
cmap = 'Reds' |
|
if channel in ['g','green','Green']: |
|
plot_arr = img_arr[:,:,1] |
|
channel_name = 'Green' |
|
cmap = 'Greens' |
|
if channel in ['b','blue','Blue']: |
|
plot_arr = img_arr[:,:,2] |
|
channel_name = 'Blue' |
|
cmap = 'Blues' |
|
|
|
if channel not in ['r','red','Red','g','green','Green','b','blue','Blue']: |
|
plot_arr = img_arr |
|
channel_name = 'Original' |
|
|
|
if ax is None: |
|
if channel_name == 'Original': |
|
|
|
plt.imshow(cv2.cvtColor(np.flip(img_arr,axis=-1),cv2.COLOR_BGR2RGB)) |
|
else: |
|
plt.imshow(plot_arr, cmap = cmap) |
|
plt.colorbar(orientation= 'vertical', shrink = 0.7, pad = 0.01, fraction = 0.046,) |
|
plt.title('Image in the {} channel'.format(channel_name)) |
|
plt.show() |
|
|
|
if ax is not None: |
|
if channel_name == 'Original': |
|
|
|
ax.imshow(cv2.cvtColor(np.flip(img_arr, axis=-1),cv2.COLOR_BGR2RGB)) |
|
|
|
else: |
|
plot = ax.imshow(plot_arr, cmap = cmap) |
|
plt.colorbar(plot, orientation= 'vertical', ax = ax, fraction = 0.046,) |
|
|
|
ax.set_title('Image in the {} channel'.format(channel_name)) |
|
|
|
|
|
def individual_channel_image_final(img_arr, channel='Red'): |
|
if channel in ['Red','Green','Blue']: |
|
fig, ax = plt.subplots(figsize = (15,10)) |
|
individual_channel_image(img_arr, channel= channel) |
|
plt.tight_layout() |
|
plt.show() |
|
fig.canvas.draw() |
|
image_array = np.array(fig.canvas.renderer.buffer_rgba()) |
|
return image_array |
|
|
|
if channel in ['All']: |
|
fig, ax = plt.subplots(2,2, figsize = (12,10)) |
|
individual_channel_image(img_arr, channel='r', ax=ax[0,0]) |
|
individual_channel_image(img_arr, channel='g', ax=ax[0,1]) |
|
individual_channel_image(img_arr, channel='b', ax=ax[1,0]) |
|
individual_channel_image(img_arr, channel='full', ax=ax[1,1]) |
|
plt.tight_layout() |
|
plt.show() |
|
fig.canvas.draw() |
|
image_array = np.array(fig.canvas.renderer.buffer_rgba()) |
|
plt.close(fig) |
|
return image_array |
|
|
|
def channel_distribution_plotter(img_array): |
|
|
|
img_array = img_array[:,:,:3] |
|
|
|
fig, ax = plt.subplots(figsize=(8,8)) |
|
plt.yticks([]) |
|
plt.xticks([]) |
|
|
|
plt.subplot(2,2,1) |
|
plt.hist(img_array[:,:,0].ravel(),bins=256,color='red'); |
|
plt.title("Red Channel") |
|
|
|
plt.subplot(2,2,2) |
|
plt.hist(img_array[:,:,1].ravel(),bins=256,color='green'); |
|
plt.title("Green Channel") |
|
|
|
plt.subplot(2,2,3) |
|
plt.hist(img_array[:,:,2].ravel(),bins=256,color='blue'); |
|
plt.title("Blue Channel") |
|
|
|
plt.subplot(2,2,4) |
|
plt.imshow(cv2.cvtColor(np.flip(img_array, axis=-1),cv2.COLOR_BGR2RGB)) |
|
|
|
plt.title("Original Image") |
|
|
|
plt.suptitle("Pixel values distribution in each channel\nx-axis: pixel values, y-axis: number of pixels") |
|
plt.tight_layout() |
|
|
|
plt.show() |
|
fig.canvas.draw() |
|
image_array = np.array(fig.canvas.renderer.buffer_rgba()) |
|
return image_array |
|
|
|
|
|
|
|
def which_channel_dominates(img_arr, original_image_plot = 'yes', original_image_opacity = 0.3, channel_opacity = 0.7): |
|
cmap = mcolors.ListedColormap(['red', 'green', 'blue', 'white', 'black', 'gray']) |
|
img_arr = img_arr[:,:,:3] |
|
|
|
red_channel = img_arr[:,:,0] |
|
green_channel = img_arr[:,:,1] |
|
blue_channel = img_arr[:,:,2] |
|
|
|
|
|
print("Red channel max. = ", np.max(red_channel), "Green max. = ", np.max(green_channel), "Blue max. = ",np.max(blue_channel)) |
|
|
|
|
|
which_channel_dominates = np.zeros((img_arr.shape[0],img_arr.shape[1])) |
|
|
|
red_greater_green = np.greater(red_channel,green_channel) |
|
red_greater_blue = np.greater(red_channel,blue_channel) |
|
green_greater_blue = np.greater(green_channel,blue_channel) |
|
|
|
|
|
|
|
which_channel_dominates[(red_greater_green & red_greater_blue)] = 1 |
|
which_channel_dominates[green_greater_blue & (~red_greater_green)] = 2 |
|
which_channel_dominates[~green_greater_blue & (~red_greater_blue)] = 3 |
|
|
|
which_channel_dominates[(red_channel == green_channel) & (red_channel == blue_channel)] = 6 |
|
which_channel_dominates[(red_channel == 255) & (blue_channel == 255) & (green_channel == 255)] = 4 |
|
which_channel_dominates[(red_channel == 0) & (blue_channel == 0) & (green_channel == 0)] = 5 |
|
|
|
print("Unique elements of channel dominat array are: - ",np.unique(which_channel_dominates)) |
|
|
|
|
|
fig, ax = plt.subplots(figsize=(8,8)) |
|
|
|
if original_image_plot == 'yes': |
|
plt.imshow(cv2.cvtColor(np.flip(img_arr, axis=-1),cv2.COLOR_BGR2RGB), alpha=original_image_opacity) |
|
|
|
plot = plt.imshow(which_channel_dominates, cmap=cmap, alpha=channel_opacity) |
|
|
|
|
|
|
|
plt.colorbar(plot, orientation='vertical', |
|
ticks = [], |
|
fraction=0.032, |
|
pad=0.04, |
|
label='Dominant Color Channel' |
|
) |
|
|
|
text = "Which channel dominates in the image below?\nWhite : R=G=B=255, Black : R=G=B=0\nGray : 0 < R=G=B< 255" |
|
plt.title(text) |
|
fig.canvas.draw() |
|
|
|
image_array = np.array(fig.canvas.renderer.buffer_rgba()) |
|
return image_array |