File size: 8,485 Bytes
f5929b1
 
 
 
 
5d7cb8c
f5929b1
 
89f3207
f5929b1
a6ee92e
89f3207
792f241
89f3207
792f241
 
 
68470e3
89f3207
 
 
 
 
 
 
 
792f241
 
 
89f3207
 
 
 
 
 
 
 
 
 
 
 
9389a0a
 
89f3207
 
aa8484e
89f3207
 
 
 
38b2790
d3b1795
792f241
 
 
 
 
 
 
 
 
 
9389a0a
792f241
 
 
 
 
 
89f3207
 
e4f3dd9
2fffe4a
e4f3dd9
 
 
 
 
 
792f241
e4f3dd9
 
2fffe4a
 
 
 
 
792f241
 
2fffe4a
 
9389a0a
792f241
 
 
2fffe4a
 
792f241
 
 
 
 
9a900af
9389a0a
 
 
 
 
 
 
 
 
 
792f241
a563432
 
 
 
 
 
 
 
792f241
a563432
 
792f241
 
 
 
d3b1795
9389a0a
 
 
 
d3b1795
 
 
0c8c445
d3b1795
792f241
9389a0a
 
 
 
 
 
 
 
 
 
 
 
792f241
f5929b1
792f241
f5929b1
9389a0a
f5929b1
9389a0a
 
 
 
 
792f241
9389a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792f241
9389a0a
5d7cb8c
 
 
792f241
f5929b1
5d7cb8c
 
792f241
5d7cb8c
792f241
 
f5929b1
 
5d7cb8c
 
 
e4f3dd9
792f241
0c8c445
d3b1795
 
e4f3dd9
d3b1795
 
792f241
 
 
 
 
 
f5929b1
 
afbe924
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import gradio as gr
import torch
from PIL import Image
import spaces
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
from diffusers.utils import load_image
import random
import time

# --- Main Configuration ---
KRYPTO_LORA = {
    "repo": "Econogoat/Krypt0_LORA",
    "trigger": "Krypt0",
    "adapter_name": "krypt0"
}

# Get access token from Space secrets
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    print("WARNING: HF_TOKEN secret is not set. Gated model downloads may fail.")

# --- Model Initialization ---
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
dtype = torch.bfloat16
base_model = "black-forest-labs/FLUX.1-dev"

# Load model components
print("Loading model components...")
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
good_vae = AutoencoderKL.from_pretrained(base_model, subfolder="vae", torch_dtype=dtype, token=HF_TOKEN).to(device)
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype, vae=taef1, token=HF_TOKEN).to(device)
print("Models loaded.")

# Load the LoRA adapter once on startup
print(f"Loading on-board LoRA: {KRYPTO_LORA['repo']}")
pipe.load_lora_weights(
    KRYPTO_LORA['repo'],
    low_cpu_mem_usage=True,
    adapter_name=KRYPTO_LORA['adapter_name'],
    token=HF_TOKEN
)
print("LoRA loaded successfully.")

MAX_SEED = 2**32 - 1

# Monkey-patch the pipeline for live preview
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)


def calculate_dimensions(aspect_ratio, resolution):
    resolution = int(resolution)
    if aspect_ratio == "Square (1:1)":
        width, height = resolution, resolution
    elif aspect_ratio == "Portrait (9:16)":
        width, height = int(resolution * 9 / 16), resolution
    elif aspect_ratio == "Landscape (16:9)":
        width, height = resolution, int(resolution * 9 / 16)
    elif aspect_ratio == "Ultrawide (21:9)":
        width, height = resolution, int(resolution * 9 / 21)
    else:
        width, height = resolution, resolution
    width = (width // 64) * 64
    height = (height // 64) * 64
    return width, height

def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
    pipe.to(device) 
    generator = torch.Generator(device=device).manual_seed(seed)
    
    image_generator = pipe.flux_pipe_call_that_returns_an_iterable_of_images(
        prompt=prompt_mash,
        num_inference_steps=steps,
        guidance_scale=cfg_scale,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": 1.0},
        output_type="pil",
        good_vae=good_vae,
    )
    final_image = None
    for i, image in enumerate(image_generator):
        final_image = image
        progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {i + 1}; --total: {steps};"></div></div>'
        yield image, gr.update(value=progress_bar, visible=True)
    yield final_image, gr.update(visible=False)

def update_history(new_image, history):
    if new_image is None:
        return history
    if history is None:
        history = []
    history.insert(0, new_image)
    return history
    
@spaces.GPU(duration=75)
def run_generation(prompt, lora_scale, cfg_scale, steps, randomize_seed, seed, aspect_ratio, base_resolution, progress=gr.Progress(track_tqdm=True)):
    if not prompt:
        raise gr.Error("Prompt cannot be empty.")

    # --- NOUVELLE LOGIQUE DE PROMPT ---
    # Définition des parties fixes du prompt
    prefix_prompt = f"{KRYPTO_LORA['trigger']}, Krypt0 the white scruffy superdog with a red cape,"
    suffix_prompt = ", This is a cinematic, ultra-high-detail, photorealistic still"
    
    # Construction du prompt final
    user_prompt = prompt # Le prompt entré par l'utilisateur
    prompt_mash = f"{prefix_prompt} {user_prompt}{suffix_prompt}"

    print("Final prompt sent to model:", prompt_mash)
    
    pipe.set_adapters([KRYPTO_LORA['adapter_name']], adapter_weights=[lora_scale])
    print(f"Adapter '{KRYPTO_LORA['adapter_name']}' activated with weight {lora_scale}.")
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)

    width, height = calculate_dimensions(aspect_ratio, base_resolution)
    print(f"Generating a {width}x{height} image.")

    for image, progress_update in generate_image(prompt_mash, steps, seed, cfg_scale, width, height, progress):
        yield image, seed, progress_update

run_generation.zerogpu = True

# --- User Interface (Gradio) ---
css = '''
#title_container { text-align: center; margin-bottom: 1em; }
#title_line { display: flex; justify-content: center; align-items: center; }
#title_line h1 { font-size: 2.5em; margin: 0; }
#subtitle { font-size: 1.1em; color: #57606a; margin-top: 0.3em; }
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.1s ease-in-out}
'''

with gr.Blocks(css=css, theme=gr.themes.Soft()) as app:
    # --- Header ---
    gr.HTML(
        """
        <div id="title_container">
            <div id="title_line">
                <h1>Krypto Image Generator - beta v1</h1>
            </div>
            <div id="subtitle">
                Powered by $Krypto | @Kryptocoinonsol
            </div>
        </div>
        """
    )
    
    with gr.Row():
        # --- LEFT COLUMN: CONTROLS ---
        with gr.Column(scale=3):
            # Prompt Controls (Simplifié)
            with gr.Group():
                prompt = gr.Textbox(
                    label="Prompt",
                    lines=3,
                    placeholder="Krypto the superdog sits in the snow, with snow on his muzzle, looking innocent. It's a medium shot of the dog, and the image creates a friendly atmosphere."
                )
            
            # Image Shape and Style Controls
            with gr.Group():
                aspect_ratio = gr.Radio(
                    label="Aspect Ratio",
                    choices=["Square (1:1)", "Portrait (9:16)", "Landscape (16:9)", "Ultrawide (21:9)"],
                    value="Square (1:1)"
                )
                lora_scale = gr.Slider(
                    label="Krypt0 Style Strength",
                    minimum=0,
                    maximum=2,
                    step=0.05,
                    value=0.9,
                    info="Controls how strongly the artistic style is applied. Higher values mean a more stylized image."
                )

            # Advanced Settings
            with gr.Accordion("Advanced Settings", open=False):
                base_resolution = gr.Slider(label="Resolution (longest side)", minimum=768, maximum=1408, step=64, value=1024)
                steps = gr.Slider(label="Generation Steps", minimum=4, maximum=50, step=1, value=20)
                cfg_scale = gr.Slider(label="Guidance (CFG Scale)", minimum=1, maximum=10, step=0.5, value=3.5)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Random Seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
            
            generate_button = gr.Button("Generate", variant="primary")
            
        # --- RIGHT COLUMN: RESULTS ---
        with gr.Column(scale=2):
            progress_bar = gr.Markdown(elem_id="progress", visible=False)
            result = gr.Image(label="Generated Image", interactive=False, show_share_button=True)
            with gr.Accordion("History", open=False):
                history_gallery = gr.Gallery(label="History", columns=4, object_fit="contain", interactive=False)
    
    # --- Event Logic ---
    generation_event = gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_generation,
        inputs=[prompt, lora_scale, cfg_scale, steps, randomize_seed, seed, aspect_ratio, base_resolution],
        outputs=[result, seed, progress_bar]
    )

    generation_event.then(
        fn=update_history,
        inputs=[result, history_gallery],
        outputs=history_gallery,
    )

app.queue(max_size=20)
app.launch()