Spaces:
No application file
No application file
File size: 1,225 Bytes
3bcf960 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
app = Flask(__name__)
# Используем квантованную модель для экономии памяти
model_name = "Qwen/Qwen-1_8B-Chat-Int4"
# Загружаем модель и токенизатор
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True
)
@app.route("/v1/chat/completions", methods=["POST"])
def chat():
data = request.json
prompt = data.get("messages", "")[-1]["content"]
# Генерируем ответ
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Возвращаем ответ в формате OpenAI API
return jsonify({
"choices": [
{
"message": {
"content": response
}
}
]
})
if __name__ == "__main__":
app.run() |