File size: 1,225 Bytes
3bcf960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from flask import Flask, request, jsonify
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

app = Flask(__name__)

# Используем квантованную модель для экономии памяти
model_name = "Qwen/Qwen-1_8B-Chat-Int4"

# Загружаем модель и токенизатор
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    device_map="auto",
    torch_dtype=torch.float16,
    trust_remote_code=True
)

@app.route("/v1/chat/completions", methods=["POST"])
def chat():
    data = request.json
    prompt = data.get("messages", "")[-1]["content"]

    # Генерируем ответ
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_new_tokens=200)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Возвращаем ответ в формате OpenAI API
    return jsonify({
        "choices": [
            {
                "message": {
                    "content": response
                }
            }
        ]
    })

if __name__ == "__main__":
    app.run()