Spaces:
Sleeping
Sleeping
main
#1
by
IvanStudent
- opened
- .env +0 -5
- .gitattributes +35 -37
- .gitignore +0 -0
- Dockerfile +0 -0
- README.md +10 -13
- animations/laptopUser.json +0 -1
- animations/loginUser.json +0 -1
- app.py +0 -32
- catboost.pkl +0 -3
- dbpredictivesystemgenai.sql +0 -74
- df_articles.csv +0 -0
- gradientboosting.pkl +0 -3
- histgradientboosting.pkl +0 -3
- lightgbm.pkl +0 -3
- mlpregressor.pkl +0 -3
- paginas/__init__.py +0 -0
- paginas/conexionMysql.py +0 -24
- paginas/conexionTest.py +0 -1
- paginas/dashboard.py +0 -813
- paginas/dashboardDemo.py +0 -947
- paginas/demo.py +0 -27
- paginas/demokaleido.py +0 -5
- paginas/images/Logo dashboard.png +0 -3
- paginas/images/Logo general.png +0 -0
- paginas/images/Logo.png +0 -0
- paginas/login.py +0 -59
- paginas/userManagement.py +0 -32
- randomforest.pkl +0 -3
- regressionmodels/catboost.pkl +0 -3
- regressionmodels/gradientboosting.pkl +0 -3
- regressionmodels/histgradientboosting.pkl +0 -3
- regressionmodels/lightgbm.pkl +0 -3
- regressionmodels/mlpregressor.pkl +0 -3
- regressionmodels/randomforest.pkl +0 -3
- regressionmodels/xgboost.pkl +0 -3
- requirements.txt +0 -0
- xgboost.pkl +0 -3
.env
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
DB_HOST=gondola.proxy.rlwy.net
|
2 |
-
DB_PORT=45741
|
3 |
-
DB_USER=root
|
4 |
-
DB_PASSWORD=OryNzMwGGmvoULIEGyBRgNLqolGdlsnw
|
5 |
-
DB_NAME=railway
|
|
|
|
|
|
|
|
|
|
|
|
.gitattributes
CHANGED
@@ -1,37 +1,35 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
-
images/Logo[[:space:]]dashboard.png filter=lfs diff=lfs merge=lfs -text
|
37 |
-
paginas/images/Logo[[:space:]]dashboard.png filter=lfs diff=lfs merge=lfs -text
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
.gitignore
DELETED
Binary file (41 Bytes)
|
|
Dockerfile
DELETED
Binary file (496 Bytes)
|
|
README.md
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
-
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
+
---
|
2 |
+
title: PredictiveMLGenAI
|
3 |
+
emoji: 📈
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: indigo
|
6 |
+
sdk: docker
|
7 |
+
pinned: false
|
8 |
+
---
|
9 |
+
|
10 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
animations/laptopUser.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"v":"5.5.7","meta":{"g":"LottieFiles AE 0.1.20","a":"","k":"","d":"","tc":""},"fr":30,"ip":0,"op":120,"w":300,"h":225,"nm":"971 [Converted]g","ddd":1,"assets":[{"id":"image_0","w":65,"h":115,"u":"","p":"","e":1},{"id":"image_1","w":27,"h":17,"u":"","p":"","e":1},{"id":"image_2","w":77,"h":65,"u":"","p":"","e":1},{"id":"image_3","w":135,"h":134,"u":"","p":"","e":1},{"id":"image_4","w":291,"h":284,"u":"","p":"","e":1}],"layers":[{"ddd":1,"ind":1,"ty":4,"nm":"Shape Layer 1","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":11,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":45,"ix":10},"or":{"a":0,"k":[292,0,353],"ix":7},"p":{"a":0,"k":[51.2175,139.747,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[21.5,18.7615,43],"ix":6}},"ao":0,"shapes":[{"ty":"rc","d":1,"s":{"a":0,"k":[100,100],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":22,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"gs","o":{"a":0,"k":100,"ix":9},"w":{"a":0,"k":4,"ix":10},"g":{"p":3,"k":{"a":0,"k":[0,0.949,0.43,0.249,0.5,0.945,0.319,0.289,1,0.941,0.207,0.328],"ix":8}},"s":{"a":0,"k":[0,0],"ix":4},"e":{"a":0,"k":[100,0],"ix":5},"t":1,"lc":1,"lj":1,"ml":4,"ml2":{"a":0,"k":4,"ix":13},"bm":0,"nm":"Gradient Stroke 1","mn":"ADBE Vector Graphic - G-Stroke","hd":false},{"ty":"tm","s":{"a":0,"k":0,"ix":1},"e":{"a":0,"k":80,"ix":2},"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":119.000004846969,"s":[720]}],"ix":3},"m":1,"ix":3,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false}],"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":2,"ty":2,"nm":"Layer 11","refId":"image_0","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":0,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":0,"ix":10},"or":{"a":0,"k":[0,0,0],"ix":7},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[91.398,72.2725,0],"to":[0,-1.667,0],"ti":[0,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[91.398,67.2725,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":60,"s":[91.398,72.2725,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":91,"s":[91.398,67.2725,0],"to":[0,0,0],"ti":[0,-1.667,0]},{"t":119.000004846969,"s":[91.398,72.2725,0]}],"ix":2},"a":{"a":0,"k":[32.334,57.477,0],"ix":1},"s":{"a":0,"k":[50,50,100],"ix":6}},"ao":0,"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":3,"ty":2,"nm":"Layer 9","parent":5,"refId":"image_1","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":0,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":0,"ix":10},"or":{"a":0,"k":[0,0,0],"ix":7},"p":{"a":0,"k":[99.575,54.653,0],"ix":2},"a":{"a":0,"k":[13.379,8.382,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":4,"ty":2,"nm":"Layer 8","parent":5,"refId":"image_2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":0,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":0,"ix":10},"or":{"a":0,"k":[0,0,0],"ix":7},"p":{"a":0,"k":[52.384,56.472,0],"ix":2},"a":{"a":0,"k":[38.333,32.236,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":5,"ty":2,"nm":"Layer 7","parent":6,"refId":"image_3","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":0,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":0,"ix":10},"or":{"a":0,"k":[0,0,0],"ix":7},"p":{"a":0,"k":[197.62,101.429,0],"ix":2},"a":{"a":0,"k":[67.454,66.635,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":18,"s":[0,0,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":22,"s":[120,120,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":26,"s":[70,70,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.167,0.167,0.167],"y":[0,0,0]},"t":30,"s":[100,100,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":90,"s":[100,100,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":94,"s":[70,70,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":98,"s":[120,120,100]},{"t":102.000004154545,"s":[0,0,100]}],"ix":6}},"ao":0,"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":6,"ty":2,"nm":"Layer 6","refId":"image_4","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":0,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":0,"ix":10},"or":{"a":0,"k":[0,0,0],"ix":7},"p":{"a":1,"k":[{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":0,"s":[152.6655,98.2715,0],"to":[0,1.667,0],"ti":[0,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":31,"s":[152.6655,103.2715,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":61,"s":[152.6655,98.2715,0],"to":[0,0,0],"ti":[0,0,0]},{"i":{"x":0.833,"y":0.833},"o":{"x":0.167,"y":0.167},"t":93,"s":[152.6655,103.2715,0],"to":[0,0,0],"ti":[0,1.667,0]},{"t":119.000004846969,"s":[152.6655,98.2715,0]}],"ix":2},"a":{"a":0,"k":[145.174,141.543,0],"ix":1},"s":{"a":0,"k":[50,50,100],"ix":6}},"ao":0,"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":7,"ty":4,"nm":"Shape Layer 5","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":0,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":0,"ix":10},"or":{"a":0,"k":[0,0,0],"ix":7},"p":{"a":0,"k":[150,112.5,0],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[50,50,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,0],[0,0],[0,0],[0,0]],"o":[[0,0],[0,0],[0,0],[0,0]],"v":[[-61,-32],[-162,38],[9,136],[129,65]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"rd","nm":"Round Corners 1","r":{"a":0,"k":12,"ix":1},"ix":2,"mn":"ADBE Vector Filter - RC","hd":false},{"ty":"gs","o":{"a":0,"k":100,"ix":9},"w":{"a":0,"k":4,"ix":10},"g":{"p":3,"k":{"a":0,"k":[0,0.949,0.43,0.249,0.5,0.945,0.319,0.289,1,0.941,0.207,0.328],"ix":8}},"s":{"a":0,"k":[0,0],"ix":4},"e":{"a":0,"k":[100,0],"ix":5},"t":1,"lc":1,"lj":1,"ml":4,"ml2":{"a":0,"k":4,"ix":13},"bm":0,"nm":"Gradient Stroke 1","mn":"ADBE Vector Graphic - G-Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[0,0],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Shape 1","np":4,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"tm","s":{"a":0,"k":0,"ix":1},"e":{"a":0,"k":80,"ix":2},"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":119.000004846969,"s":[-360]}],"ix":3},"m":1,"ix":2,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false}],"ip":0,"op":120.0000048877,"st":0,"bm":0},{"ddd":1,"ind":8,"ty":4,"nm":"Shape Layer 4","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"rx":{"a":0,"k":11,"ix":8},"ry":{"a":0,"k":0,"ix":9},"rz":{"a":0,"k":45,"ix":10},"or":{"a":0,"k":[292,0,358],"ix":7},"p":{"a":0,"k":[81.173,91.3375,72.9015],"ix":2},"a":{"a":0,"k":[0,0,0],"ix":1},"s":{"a":0,"k":[34.0275,34.584,78],"ix":6}},"ao":0,"shapes":[{"ty":"rc","d":1,"s":{"a":0,"k":[100,100],"ix":2},"p":{"a":0,"k":[0,0],"ix":3},"r":{"a":0,"k":22,"ix":4},"nm":"Rectangle Path 1","mn":"ADBE Vector Shape - Rect","hd":false},{"ty":"gs","o":{"a":0,"k":100,"ix":9},"w":{"a":0,"k":4,"ix":10},"g":{"p":3,"k":{"a":0,"k":[0,0.949,0.43,0.249,0.5,0.945,0.319,0.289,1,0.941,0.207,0.328],"ix":8}},"s":{"a":0,"k":[0,0],"ix":4},"e":{"a":0,"k":[100,0],"ix":5},"t":1,"lc":1,"lj":1,"ml":4,"ml2":{"a":0,"k":4,"ix":13},"bm":0,"nm":"Gradient Stroke 1","mn":"ADBE Vector Graphic - G-Stroke","hd":false},{"ty":"tm","s":{"a":0,"k":0,"ix":1},"e":{"a":0,"k":80,"ix":2},"o":{"a":1,"k":[{"i":{"x":[0.833],"y":[0.833]},"o":{"x":[0.167],"y":[0.167]},"t":0,"s":[0]},{"t":119.000004846969,"s":[-720]}],"ix":3},"m":1,"ix":3,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false}],"ip":0,"op":120.0000048877,"st":0,"bm":0}],"markers":[]}
|
|
|
|
animations/loginUser.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"v":"5.5.7","meta":{"g":"LottieFiles AE 0.1.20","a":"","k":"","d":"","tc":""},"fr":25,"ip":0,"op":50,"w":1000,"h":1000,"nm":"User","ddd":0,"assets":[],"layers":[{"ddd":0,"ind":1,"ty":4,"nm":"Layer 1 Outlines","sr":1,"ks":{"o":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":14,"s":[100]},{"t":15,"s":[0]}],"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[500,500.305,0],"ix":2},"a":{"a":0,"k":[428.342,494.37,0],"ix":1},"s":{"a":0,"k":[100,100,100],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[0,93.473],[-93.473,0],[0,-93.473],[93.473,0]],"o":[[0,-93.473],[93.473,0],[0,93.473],[-93.473,0]],"v":[[-169.248,0],[0,-169.248],[169.248,0],[0,169.248]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":1,"k":[{"i":{"x":[0.833],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[0.4627,0.498,0.6784,1]},{"t":5,"s":[0.1554,0.2269,0.5846,1]}],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":47,"ix":5},"lc":2,"lj":2,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[428.342,286.748],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[1.001,14.488],[0,0],[3.082,17.225],[4.699,14.677],[7.919,13.93],[10.273,9.831],[14.821,5.866],[16.294,0.436],[0,0],[0,0],[4.363,-2.841],[12.785,-8.173],[19.383,-6.263],[19.525,0],[19.406,6.275],[12.139,7.738],[10.029,6.535],[3.059,1.627],[0,0],[0,0],[13.646,-5.404],[10.29,-9.852],[7.921,-13.929],[4.695,-14.664],[3.08,-17.146],[1.023,-14.798],[0,-15.601],[-21.466,-20.433],[-14.643,-5.103],[-17.417,0],[0,0],[-13.942,4.859],[-10.993,10.463],[-5.376,14.366],[-0.002,17.229]],"o":[[0,0],[-1.018,-14.698],[-3.067,-17.108],[-4.69,-14.654],[-7.922,-13.941],[-10.304,-9.856],[-13.649,-5.403],[0,0],[0,0],[-3.01,1.602],[-9.316,6.075],[-12.104,7.718],[-19.405,6.271],[-19.525,0],[-19.363,-6.249],[-11.744,-7.501],[-4.325,-2.821],[0,0],[0,0],[-16.292,0.436],[-14.835,5.869],[-10.271,9.837],[-7.912,13.93],[-4.682,14.626],[-3.078,17.128],[-1.023,14.691],[0,35.256],[10.992,10.461],[13.941,4.858],[0,0],[17.415,0],[14.644,-5.103],[10.988,-10.454],[5.101,-13.633],[-0.003,-15.378]],"v":[[309.329,24.263],[309.285,23.609],[303.106,-24.499],[291.402,-72.396],[272.399,-115.473],[244.978,-151.299],[207.114,-174.991],[161.988,-183.791],[155.657,-183.96],[150.067,-180.982],[138.954,-174.286],[106.117,-153.117],[58.651,-132.039],[-0.017,-122.589],[-58.687,-132.045],[-106.156,-153.121],[-138.979,-174.28],[-150.113,-180.988],[-155.7,-183.96],[-162.025,-183.791],[-207.142,-174.989],[-245.011,-151.294],[-272.426,-115.479],[-291.424,-72.391],[-303.121,-24.511],[-309.301,23.603],[-310.842,69.26],[-278.492,153.185],[-239.861,176.639],[-192.603,183.96],[192.598,183.96],[239.853,176.637],[278.488,153.178],[303.151,115.771],[310.842,69.262]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":1,"k":[{"i":{"x":[0.833],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[0.4627,0.498,0.6784,1]},{"t":5,"s":[0.1554,0.2269,0.5846,1]}],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":47,"ix":5},"lc":2,"lj":2,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[428.342,687.279],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false},{"ty":"tm","s":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[100]},{"t":15,"s":[0]}],"ix":1},"e":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[100]},{"t":15,"s":[100]}],"ix":2},"o":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[0]},{"t":15,"s":[-100]}],"ix":3},"m":1,"ix":3,"nm":"Trim Paths 1","mn":"ADBE Vector Filter - Trim","hd":false}],"ip":0,"op":250,"st":0,"bm":0},{"ddd":0,"ind":2,"ty":4,"nm":"Layer 1 Outlines 2","sr":1,"ks":{"o":{"a":0,"k":100,"ix":11},"r":{"a":0,"k":0,"ix":10},"p":{"a":0,"k":[500.001,500,0],"ix":2},"a":{"a":0,"k":[428.342,494.37,0],"ix":1},"s":{"a":1,"k":[{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":15,"s":[100,100,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":20,"s":[105,105,100]},{"i":{"x":[0.667,0.667,0.667],"y":[1,1,1]},"o":{"x":[0.333,0.333,0.333],"y":[0,0,0]},"t":25,"s":[97,97,100]},{"t":30,"s":[100,100,100]}],"ix":6}},"ao":0,"shapes":[{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":1,"k":[{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":15,"s":[{"i":[[0,93.473],[-93.473,0],[0,-93.473],[93.473,0]],"o":[[0,-93.473],[93.473,0],[0,93.473],[-93.473,0]],"v":[[-169.248,0],[0,-169.248],[169.248,0],[0,169.248]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":20,"s":[{"i":[[0,93.473],[-93.473,0],[0,-93.473],[93.473,0]],"o":[[0,-93.473],[93.473,0],[0,93.473],[-93.473,0]],"v":[[-168.75,-23.81],[0.498,-193.058],[169.746,-23.81],[0.498,145.439]],"c":true}]},{"i":{"x":0.667,"y":1},"o":{"x":0.333,"y":0},"t":25,"s":[{"i":[[0,93.473],[-93.473,0],[0,-93.473],[93.473,0]],"o":[[0,-93.473],[93.473,0],[0,93.473],[-93.473,0]],"v":[[-168.723,41.237],[0.525,-128.011],[169.773,41.237],[0.525,210.485]],"c":true}]},{"t":30,"s":[{"i":[[0,93.473],[-93.473,0],[0,-93.473],[93.473,0]],"o":[[0,-93.473],[93.473,0],[0,93.473],[-93.473,0]],"v":[[-169.248,0],[0,-169.248],[169.248,0],[0,169.248]],"c":true}]}],"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[0.4627,0.498,0.6784,1]},{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":14,"s":[0.4627,0.498,0.6784,1]},{"t":15,"s":[0.1554,0.2269,0.5846,1]}],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":47,"ix":5},"lc":1,"lj":1,"ml":10,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[428.342,286.748],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 1","np":2,"cix":2,"bm":0,"ix":1,"mn":"ADBE Vector Group","hd":false},{"ty":"gr","it":[{"ind":0,"ty":"sh","ix":1,"ks":{"a":0,"k":{"i":[[1.001,14.488],[0,0],[3.082,17.225],[4.699,14.677],[7.919,13.93],[10.273,9.831],[14.821,5.866],[16.294,0.436],[0,0],[0,0],[4.363,-2.841],[12.785,-8.173],[19.383,-6.263],[19.525,0],[19.406,6.275],[12.139,7.738],[10.029,6.535],[3.059,1.627],[0,0],[0,0],[13.646,-5.404],[10.29,-9.852],[7.921,-13.929],[4.695,-14.664],[3.08,-17.146],[1.023,-14.798],[0,-15.601],[-21.466,-20.433],[-14.643,-5.103],[-17.417,0],[0,0],[-13.942,4.859],[-10.993,10.463],[-5.376,14.366],[-0.002,17.229]],"o":[[0,0],[-1.018,-14.698],[-3.067,-17.108],[-4.69,-14.654],[-7.922,-13.941],[-10.304,-9.856],[-13.649,-5.403],[0,0],[0,0],[-3.01,1.602],[-9.316,6.075],[-12.104,7.718],[-19.405,6.271],[-19.525,0],[-19.363,-6.249],[-11.744,-7.501],[-4.325,-2.821],[0,0],[0,0],[-16.292,0.436],[-14.835,5.869],[-10.271,9.837],[-7.912,13.93],[-4.682,14.626],[-3.078,17.128],[-1.023,14.691],[0,35.256],[10.992,10.461],[13.941,4.858],[0,0],[17.415,0],[14.644,-5.103],[10.988,-10.454],[5.101,-13.633],[-0.003,-15.378]],"v":[[309.329,24.263],[309.285,23.609],[303.106,-24.499],[291.402,-72.396],[272.399,-115.473],[244.978,-151.299],[207.114,-174.991],[161.988,-183.791],[155.657,-183.96],[150.067,-180.982],[138.954,-174.286],[106.117,-153.117],[58.651,-132.039],[-0.017,-122.589],[-58.687,-132.045],[-106.156,-153.121],[-138.979,-174.28],[-150.113,-180.988],[-155.7,-183.96],[-162.025,-183.791],[-207.142,-174.989],[-245.011,-151.294],[-272.426,-115.479],[-291.424,-72.391],[-303.121,-24.511],[-309.301,23.603],[-310.842,69.26],[-278.492,153.185],[-239.861,176.639],[-192.603,183.96],[192.598,183.96],[239.853,176.637],[278.488,153.178],[303.151,115.771],[310.842,69.262]],"c":true},"ix":2},"nm":"Path 1","mn":"ADBE Vector Shape - Group","hd":false},{"ty":"st","c":{"a":1,"k":[{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":0,"s":[0.4627,0.498,0.6784,1]},{"i":{"x":[0.667],"y":[1]},"o":{"x":[0.333],"y":[0]},"t":14,"s":[0.4627,0.498,0.6784,1]},{"t":15,"s":[0.1554,0.2269,0.5846,1]}],"ix":3},"o":{"a":0,"k":100,"ix":4},"w":{"a":0,"k":47,"ix":5},"lc":2,"lj":2,"bm":0,"nm":"Stroke 1","mn":"ADBE Vector Graphic - Stroke","hd":false},{"ty":"tr","p":{"a":0,"k":[428.342,687.279],"ix":2},"a":{"a":0,"k":[0,0],"ix":1},"s":{"a":0,"k":[100,100],"ix":3},"r":{"a":0,"k":0,"ix":6},"o":{"a":0,"k":100,"ix":7},"sk":{"a":0,"k":0,"ix":4},"sa":{"a":0,"k":0,"ix":5},"nm":"Transform"}],"nm":"Group 2","np":2,"cix":2,"bm":0,"ix":2,"mn":"ADBE Vector Group","hd":false}],"ip":0,"op":250,"st":0,"bm":0}],"markers":[]}
|
|
|
|
app.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from paginas import login, dashboardDemo
|
3 |
-
|
4 |
-
|
5 |
-
def main():
|
6 |
-
# Configurar la página y el estado de la sesión (solo una vez en app.py)
|
7 |
-
st.set_page_config(
|
8 |
-
page_title=":beginner: Dashboard Sales", # Título de la página
|
9 |
-
page_icon=":smile:", # Icono de la página
|
10 |
-
layout="wide", # Configurar el layout para que ocupe todo el ancho
|
11 |
-
initial_sidebar_state="expanded" # Barra lateral expandida por defecto
|
12 |
-
)
|
13 |
-
|
14 |
-
# Leer parámetros de la URL
|
15 |
-
query_params = st.query_params
|
16 |
-
logged_in = query_params.get("logged_in", ["False"])[0] == "True"
|
17 |
-
|
18 |
-
# Verificar si el usuario está logueado
|
19 |
-
if logged_in or ("logged_in" in st.session_state and st.session_state.get("logged_in", False)):
|
20 |
-
st.session_state.logged_in = True # Asegurar consistencia interna del estado
|
21 |
-
if "archivo_subido" not in st.session_state:
|
22 |
-
st.session_state.archivo_subido = False
|
23 |
-
dashboardDemo.mostrar_dashboard()
|
24 |
-
else:
|
25 |
-
# Si no, mostramos el login
|
26 |
-
login.showLogin()
|
27 |
-
# Si inicia sesión correctamente, actualiza el parámetro en la URL
|
28 |
-
if "logged_in" in st.session_state and st.session_state.logged_in:
|
29 |
-
st.query_params.set(logged_in="True")
|
30 |
-
|
31 |
-
if __name__ == "__main__":
|
32 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
catboost.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:059f80be82f0f5ace74dc7ee09cd8a24502bb2e106623f43404a65c1df9abd0f
|
3 |
-
size 1115713
|
|
|
|
|
|
|
|
dbpredictivesystemgenai.sql
DELETED
@@ -1,74 +0,0 @@
|
|
1 |
-
-- phpMyAdmin SQL Dump
|
2 |
-
-- version 5.2.1
|
3 |
-
-- https://www.phpmyadmin.net/
|
4 |
-
--
|
5 |
-
-- Servidor: 127.0.0.1
|
6 |
-
-- Tiempo de generación: 19-06-2025 a las 19:52:38
|
7 |
-
-- Versión del servidor: 10.4.32-MariaDB
|
8 |
-
-- Versión de PHP: 8.2.12
|
9 |
-
|
10 |
-
SET SQL_MODE = "NO_AUTO_VALUE_ON_ZERO";
|
11 |
-
START TRANSACTION;
|
12 |
-
SET time_zone = "+00:00";
|
13 |
-
|
14 |
-
|
15 |
-
/*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT */;
|
16 |
-
/*!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS */;
|
17 |
-
/*!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION */;
|
18 |
-
/*!40101 SET NAMES utf8mb4 */;
|
19 |
-
|
20 |
-
--
|
21 |
-
-- Base de datos: `dbpredictivesystemgenai`
|
22 |
-
--
|
23 |
-
|
24 |
-
-- --------------------------------------------------------
|
25 |
-
|
26 |
-
--
|
27 |
-
-- Estructura de tabla para la tabla `usuarios`
|
28 |
-
--
|
29 |
-
|
30 |
-
CREATE TABLE `usuarios` (
|
31 |
-
`id` int(11) NOT NULL,
|
32 |
-
`nombre` varchar(20) NOT NULL,
|
33 |
-
`apellido` varchar(30) NOT NULL,
|
34 |
-
`correo` varchar(30) NOT NULL,
|
35 |
-
`telefono` varchar(9) NOT NULL,
|
36 |
-
`username` varchar(30) NOT NULL,
|
37 |
-
`password` varchar(50) NOT NULL
|
38 |
-
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci;
|
39 |
-
|
40 |
-
--
|
41 |
-
-- Volcado de datos para la tabla `usuarios`
|
42 |
-
--
|
43 |
-
|
44 |
-
INSERT INTO `usuarios` (`id`, `nombre`, `apellido`, `correo`, `telefono`, `username`, `password`) VALUES
|
45 |
-
(1, 'Administrador', 'Admin', '[email protected]', '985615263', 'admin', 'pass_admin'),
|
46 |
-
(2, 'Juan Pablo', 'Perez Gonzalez', '[email protected]', '978451223', 'juanperez', 'pass_juanperez'),
|
47 |
-
(3, 'Carlos Eduardo', 'Luna Martinez', '[email protected]', '978456129', 'carlosluna', 'pass_carlosluna'),
|
48 |
-
(4, 'Maria Gabriela', 'Gomez Rodriguez', '[email protected]', '998565236', 'mariagomez', 'pass_mariagomez'),
|
49 |
-
(5, 'Ana Lucia', 'Hernandez Diaz', '[email protected]', '963365125', 'analucia', 'pass_analucia');
|
50 |
-
|
51 |
-
--
|
52 |
-
-- Índices para tablas volcadas
|
53 |
-
--
|
54 |
-
|
55 |
-
--
|
56 |
-
-- Indices de la tabla `usuarios`
|
57 |
-
--
|
58 |
-
ALTER TABLE `usuarios`
|
59 |
-
ADD PRIMARY KEY (`id`);
|
60 |
-
|
61 |
-
--
|
62 |
-
-- AUTO_INCREMENT de las tablas volcadas
|
63 |
-
--
|
64 |
-
|
65 |
-
--
|
66 |
-
-- AUTO_INCREMENT de la tabla `usuarios`
|
67 |
-
--
|
68 |
-
ALTER TABLE `usuarios`
|
69 |
-
MODIFY `id` int(11) NOT NULL AUTO_INCREMENT, AUTO_INCREMENT=31;
|
70 |
-
COMMIT;
|
71 |
-
|
72 |
-
/*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT */;
|
73 |
-
/*!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS */;
|
74 |
-
/*!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
df_articles.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
gradientboosting.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5bb28622f5a612db81f8c5d12f56913710303da5778551e6931dd97393ebad1c
|
3 |
-
size 145876
|
|
|
|
|
|
|
|
histgradientboosting.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:13dca14204a9cbdd7bb407ae68697b9d4acc5b4969119b5abd2301f8c6e674cd
|
3 |
-
size 375945
|
|
|
|
|
|
|
|
lightgbm.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ae50d6dfc075ff1b930fcb207169710ab452f384a006ed4a3c61e3d2baae35f5
|
3 |
-
size 281459
|
|
|
|
|
|
|
|
mlpregressor.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:287880615fc3e4cfedbba56d537bb7217ea86808ed896d81fd75b43f3b596387
|
3 |
-
size 261329
|
|
|
|
|
|
|
|
paginas/__init__.py
DELETED
File without changes
|
paginas/conexionMysql.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
from contextlib import contextmanager
|
2 |
-
import MySQLdb
|
3 |
-
import os
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
load_dotenv()
|
9 |
-
|
10 |
-
|
11 |
-
@contextmanager
|
12 |
-
def get_db_connection():
|
13 |
-
connection = MySQLdb.connect(
|
14 |
-
host=os.environ["DB_HOST"],
|
15 |
-
port=int(os.environ["DB_PORT"]),
|
16 |
-
user=os.environ["DB_USER"],
|
17 |
-
passwd=os.environ["DB_PASSWORD"],
|
18 |
-
db=os.environ["DB_NAME"]
|
19 |
-
)
|
20 |
-
|
21 |
-
try:
|
22 |
-
yield connection
|
23 |
-
finally:
|
24 |
-
connection.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
paginas/conexionTest.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
paginas/dashboard.py
DELETED
@@ -1,813 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import plotly.express as px
|
4 |
-
import random
|
5 |
-
import time
|
6 |
-
import joblib
|
7 |
-
import os
|
8 |
-
import statsmodels
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import os
|
11 |
-
from groq import Groq
|
12 |
-
import html
|
13 |
-
from pydub import AudioSegment
|
14 |
-
import tempfile
|
15 |
-
from io import BytesIO
|
16 |
-
import tempfile
|
17 |
-
#from langchain.agents.agent_toolkits import create_csv_agent
|
18 |
-
#from langchain_groq import ChatGroq
|
19 |
-
# ===========================
|
20 |
-
# Función para generar datos ficticios
|
21 |
-
# ===========================
|
22 |
-
def generar_datos():
|
23 |
-
meses = [
|
24 |
-
"Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio",
|
25 |
-
"Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"
|
26 |
-
]
|
27 |
-
paises = ["México", "Colombia", "Argentina", "Chile", "Perú"]
|
28 |
-
data = [
|
29 |
-
{"mes": mes, "pais": pais, "Total": random.randint(100, 1000)}
|
30 |
-
for mes in meses for pais in paises
|
31 |
-
]
|
32 |
-
return pd.DataFrame(data), meses, paises
|
33 |
-
|
34 |
-
# ===========================
|
35 |
-
# Función para el dashboard principal
|
36 |
-
# ===========================
|
37 |
-
def mostrar_dashboard():
|
38 |
-
# Cargar variables desde el archivo .env
|
39 |
-
load_dotenv()
|
40 |
-
|
41 |
-
# Acceder a la clave
|
42 |
-
groq_key = os.getenv("GROQ_API_KEY")
|
43 |
-
client = Groq(api_key=groq_key)
|
44 |
-
|
45 |
-
dfDatos, meses, paises = generar_datos()
|
46 |
-
|
47 |
-
# Opciones del selectbox
|
48 |
-
lista_opciones = ['5 años', '3 años', '1 año', '5 meses']
|
49 |
-
|
50 |
-
# Mostrar barra lateral
|
51 |
-
mostrar_sidebar(client)
|
52 |
-
|
53 |
-
# Título principal
|
54 |
-
st.header(':bar_chart: Dashboard Sales')
|
55 |
-
|
56 |
-
# Mostrar métricas
|
57 |
-
#mostrar_metricas()
|
58 |
-
|
59 |
-
# Mostrar gráficos
|
60 |
-
mostrar_graficos(lista_opciones)
|
61 |
-
|
62 |
-
# ===========================
|
63 |
-
# Configuración inicial de la página
|
64 |
-
# ===========================
|
65 |
-
#def configurar_pagina():
|
66 |
-
#st.set_page_config(
|
67 |
-
# page_title="Dashboard Sales",
|
68 |
-
# page_icon=":smile:",
|
69 |
-
# layout="wide",
|
70 |
-
# initial_sidebar_state="expanded"
|
71 |
-
#)
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# ===========================
|
76 |
-
# Función para la barra lateral
|
77 |
-
# ===========================
|
78 |
-
def mostrar_sidebar(client):
|
79 |
-
sidebar_logo = r"paginas\images\Logo general.png"
|
80 |
-
main_body_logo = r"paginas\images\Logo.png"
|
81 |
-
sidebar_logo_dashboard = r"paginas\images\Logo dashboard.png"
|
82 |
-
|
83 |
-
st.logo(sidebar_logo, size="large", icon_image=main_body_logo)
|
84 |
-
|
85 |
-
st.sidebar.image(sidebar_logo_dashboard)
|
86 |
-
st.sidebar.title('🧠 GenAI Forecast')
|
87 |
-
|
88 |
-
loadCSV()
|
89 |
-
|
90 |
-
archivo_csv = "df_articles.csv"
|
91 |
-
chatBotProtech(client)
|
92 |
-
downloadCSV(archivo_csv)
|
93 |
-
|
94 |
-
|
95 |
-
# Mostrar la tabla solo si se ha subido un archivo válido
|
96 |
-
'''
|
97 |
-
if 'archivo_subido' in st.session_state and st.session_state.archivo_subido: # Verificamos si el archivo ha sido subido y es válido
|
98 |
-
st.sidebar.markdown("Vista previa del archivo CSV:")
|
99 |
-
# Usar st.dataframe() para que ocupe todo el ancho disponible
|
100 |
-
st.sidebar.dataframe(st.session_state.df_subido, use_container_width=True) # Mostrar la tabla con el archivo subido
|
101 |
-
'''
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
if st.sidebar.button("Cerrar Sesión"):
|
106 |
-
cerrar_sesion()
|
107 |
-
|
108 |
-
|
109 |
-
# ===========================
|
110 |
-
# Función para métricas principales
|
111 |
-
# ===========================
|
112 |
-
'''
|
113 |
-
def mostrar_metricas():
|
114 |
-
c1, c2, c3, c4, c5 = st.columns(5)
|
115 |
-
valores = [89, 78, 67, 56, 45]
|
116 |
-
for i, col in enumerate([c1, c2, c3, c4, c5]):
|
117 |
-
valor1 = valores[i]
|
118 |
-
valor2 = valor1 - 10 # Simulación de variación
|
119 |
-
variacion = valor1 - valor2
|
120 |
-
unidad = "unidades" if i < 4 else "%"
|
121 |
-
col.metric(f"Productos vendidos", f'{valor1:,.0f} {unidad}', f'{variacion:,.0f}')
|
122 |
-
'''
|
123 |
-
|
124 |
-
|
125 |
-
# Función para obtener los meses relevantes
|
126 |
-
def obtener_meses_relevantes(df):
|
127 |
-
# Extraemos los años y meses de la columna 'Date'
|
128 |
-
df['Year'] = pd.to_datetime(df['orddt']).dt.year
|
129 |
-
df['Month'] = pd.to_datetime(df['orddt']).dt.month
|
130 |
-
|
131 |
-
# Encontramos el primer y último año en el dataset
|
132 |
-
primer_ano = df['Year'].min()
|
133 |
-
ultimo_ano = df['Year'].max()
|
134 |
-
|
135 |
-
meses_relevantes = []
|
136 |
-
nombres_meses_relevantes = []
|
137 |
-
|
138 |
-
# Recorrer todos los años dentro del rango
|
139 |
-
for ano in range(primer_ano, ultimo_ano + 1):
|
140 |
-
for mes in [1, 4, 7, 10]: # Meses relevantes: enero (1), abril (4), julio (7), octubre (10)
|
141 |
-
if mes in df[df['Year'] == ano]['Month'].values:
|
142 |
-
# Obtener el nombre del mes
|
143 |
-
nombre_mes = pd.to_datetime(f"{ano}-{mes}-01").strftime('%B') # Mes en formato textual (Enero, Abril, etc.)
|
144 |
-
meses_relevantes.append(f"{nombre_mes}-{ano}")
|
145 |
-
nombres_meses_relevantes.append(f"{nombre_mes}-{ano}")
|
146 |
-
|
147 |
-
return meses_relevantes, nombres_meses_relevantes
|
148 |
-
|
149 |
-
# ===========================
|
150 |
-
# Función para gráficos
|
151 |
-
# ===========================
|
152 |
-
def mostrar_graficos(lista_opciones):
|
153 |
-
|
154 |
-
"""
|
155 |
-
c1, c2 = st.columns([20, 80])
|
156 |
-
|
157 |
-
with c1:
|
158 |
-
filtroAnios = st.selectbox('Año', options=lista_opciones)
|
159 |
-
|
160 |
-
with c2:
|
161 |
-
st.markdown("### :pushpin: Ventas actuales")
|
162 |
-
# Si hay un archivo válido subido
|
163 |
-
if "archivo_subido" in st.session_state and st.session_state.archivo_subido:
|
164 |
-
# Cargar datos del archivo subido
|
165 |
-
df = st.session_state.df_subido.copy()
|
166 |
-
df['Date'] = pd.to_datetime(df['Date'])
|
167 |
-
df['Mes-Año'] = df['Date'].dt.strftime('%B-%Y') # Formato deseado
|
168 |
-
df = df.sort_values('Date') # Ordenar por fecha
|
169 |
-
|
170 |
-
# Obtener los meses relevantes del dataset
|
171 |
-
meses_relevantes, nombres_meses_relevantes = obtener_meses_relevantes(df)
|
172 |
-
|
173 |
-
# Crear la gráfica
|
174 |
-
fig = px.line(
|
175 |
-
df,
|
176 |
-
x='Mes-Año',
|
177 |
-
y='Sale',
|
178 |
-
title='Ventas mensuales (Archivo Subido)',
|
179 |
-
labels={'Mes-Año': 'Mes-Año', 'Sale': 'Ventas'},
|
180 |
-
)
|
181 |
-
else:
|
182 |
-
# Datos por defecto
|
183 |
-
df = pd.DataFrame({
|
184 |
-
"Mes-Año": ["Enero-2024", "Febrero-2024", "Marzo-2024", "Abril-2024", "Mayo-2024", "Junio-2024", "Julio-2024", "Agosto-2024", "Septiembre-2024", "Octubre-2024", "Noviembre-2024", "Diciembre-2024"],
|
185 |
-
"Sale": [100, 150, 120, 200, 250, 220, 280, 300, 350, 400, 450, 500],
|
186 |
-
})
|
187 |
-
|
188 |
-
# Obtener los meses relevantes
|
189 |
-
meses_relevantes = ["Enero-2024", "Abril-2024", "Julio-2024", "Octubre-2024"]
|
190 |
-
nombres_meses_relevantes = ["Enero-2024", "Abril-2024", "Julio-2024", "Octubre-2024"]
|
191 |
-
|
192 |
-
# Crear la gráfica
|
193 |
-
fig = px.line(
|
194 |
-
df,
|
195 |
-
x='Mes-Año',
|
196 |
-
y='Sale',
|
197 |
-
title='Ventas mensuales (Datos por defecto)',
|
198 |
-
labels={'Mes-Año': 'Mes-Año', 'Sale': 'Ventas'},
|
199 |
-
line_shape='linear' # Línea continua
|
200 |
-
)
|
201 |
-
|
202 |
-
|
203 |
-
fig.update_xaxes(tickangle=-45) # Ajustar ángulo de etiquetas en X
|
204 |
-
|
205 |
-
# Mejorar el diseño de la gráfica
|
206 |
-
fig = mejorar_diseno_grafica(fig, meses_relevantes, nombres_meses_relevantes)
|
207 |
-
st.plotly_chart(fig, use_container_width=True) # Evita que ocupe todo el ancho
|
208 |
-
|
209 |
-
# Gráfica 2: Ventas actuales y proyectadas
|
210 |
-
st.markdown("### :chart_with_upwards_trend: Pronóstico")
|
211 |
-
mostrar_ventas_proyectadas(filtroAnios)
|
212 |
-
"""
|
213 |
-
if "archivo_subido" not in st.session_state or not st.session_state.archivo_subido:
|
214 |
-
st.warning("Por favor, sube un archivo CSV válido para visualizar los gráficos.")
|
215 |
-
return
|
216 |
-
|
217 |
-
df = st.session_state.df_subido.copy()
|
218 |
-
|
219 |
-
# Fila 1: 3 gráficas
|
220 |
-
col1, col2, col3 = st.columns(3)
|
221 |
-
with col1:
|
222 |
-
fig1 = px.histogram(df, x='sales', title='Distribución de Ventas')
|
223 |
-
st.plotly_chart(fig1, use_container_width=True)
|
224 |
-
|
225 |
-
with col2:
|
226 |
-
fig2 = px.box(df, x='segmt', y='sales', title='Ventas por Segmento')
|
227 |
-
st.plotly_chart(fig2, use_container_width=True)
|
228 |
-
|
229 |
-
with col3:
|
230 |
-
print("")
|
231 |
-
|
232 |
-
# Fila 2: 2 gráficas
|
233 |
-
col4, col5 = st.columns(2)
|
234 |
-
with col4:
|
235 |
-
fig4 = px.pie(df, names='categ', values='sales', title='Ventas por Categoría')
|
236 |
-
st.plotly_chart(fig4, use_container_width=True)
|
237 |
-
|
238 |
-
with col5:
|
239 |
-
|
240 |
-
# Agrupar por nombre de producto y sumar las ventas
|
241 |
-
top_productos = (
|
242 |
-
df.groupby('prdna')['sales']
|
243 |
-
.sum()
|
244 |
-
.sort_values(ascending=False)
|
245 |
-
.head(10)
|
246 |
-
.reset_index()
|
247 |
-
)
|
248 |
-
|
249 |
-
# Crear gráfica de barras horizontales
|
250 |
-
fig5 = px.bar(
|
251 |
-
top_productos,
|
252 |
-
x='sales',
|
253 |
-
y='prdna',
|
254 |
-
orientation='h',
|
255 |
-
title='Top 10 productos más vendidos',
|
256 |
-
labels={'sales': 'Ventas', 'prdna': 'Producto'},
|
257 |
-
color='sales',
|
258 |
-
color_continuous_scale='Blues'
|
259 |
-
)
|
260 |
-
|
261 |
-
fig5.update_layout(yaxis={'categoryorder': 'total ascending'})
|
262 |
-
st.plotly_chart(fig5, use_container_width=True)
|
263 |
-
|
264 |
-
col6, col7 = st.columns(2)
|
265 |
-
with col6:
|
266 |
-
# Fuera del sistema de columnas
|
267 |
-
tabla = df.pivot_table(index='state', columns='subct', values='sales', aggfunc='sum').fillna(0)
|
268 |
-
|
269 |
-
if not tabla.empty:
|
270 |
-
tabla = tabla.astype(float)
|
271 |
-
fig6 = px.imshow(
|
272 |
-
tabla.values,
|
273 |
-
labels=dict(x="Categoría", y="Estado", color="Ventas"),
|
274 |
-
x=tabla.columns,
|
275 |
-
y=tabla.index,
|
276 |
-
text_auto=True,
|
277 |
-
title="Mapa de Calor: Ventas por Estado y Categoría"
|
278 |
-
)
|
279 |
-
|
280 |
-
# Ajuste del tamaño de la figura
|
281 |
-
# fig6.update_layout(height=600, width=1000) # Puedes ajustar según tu pantalla
|
282 |
-
st.plotly_chart(fig6, use_container_width=True)
|
283 |
-
else:
|
284 |
-
st.warning("No hay datos suficientes para mostrar el mapa de calor.")
|
285 |
-
|
286 |
-
|
287 |
-
with col7:
|
288 |
-
fig7 = px.bar(df.groupby('state')['sales'].sum().reset_index(), x='state', y='sales', title='Ventas por Estado')
|
289 |
-
st.plotly_chart(fig7, use_container_width=True)
|
290 |
-
|
291 |
-
# -------------------------------
|
292 |
-
# CARGA DE CSV Y GUARDADO EN SESIÓN
|
293 |
-
# -------------------------------
|
294 |
-
|
295 |
-
def loadCSV():
|
296 |
-
columnas_requeridas = [
|
297 |
-
'rowid','ordid','orddt',
|
298 |
-
'shpdt','segmt','state',
|
299 |
-
'cono','prodid','categ',
|
300 |
-
'subct','prdna','sales'
|
301 |
-
]
|
302 |
-
with st.sidebar.expander("📁 Subir archivo"):
|
303 |
-
uploaded_file = st.file_uploader("Sube un archivo CSV:", type=["csv"], key="upload_csv")
|
304 |
-
|
305 |
-
|
306 |
-
if uploaded_file is not None:
|
307 |
-
# Reseteamos el estado de 'descargado' cuando se sube un archivo
|
308 |
-
st.session_state.descargado = False
|
309 |
-
st.session_state.archivo_subido = False # Reinicia el estado
|
310 |
-
try:
|
311 |
-
# Leer el archivo subido
|
312 |
-
df = pd.read_csv(uploaded_file)
|
313 |
-
|
314 |
-
# Verificar que las columnas estén presentes y en el orden correcto
|
315 |
-
if list(df.columns) == columnas_requeridas:
|
316 |
-
st.session_state.df_subido = df
|
317 |
-
st.session_state.archivo_subido = True
|
318 |
-
aviso = st.sidebar.success("✅ Archivo subido correctamente.")
|
319 |
-
time.sleep(3)
|
320 |
-
aviso.empty()
|
321 |
-
|
322 |
-
|
323 |
-
else:
|
324 |
-
st.session_state.archivo_subido = False
|
325 |
-
aviso = st.sidebar.error(f"El archivo no tiene las columnas requeridas: {columnas_requeridas}.")
|
326 |
-
time.sleep(3)
|
327 |
-
aviso.empty()
|
328 |
-
|
329 |
-
except Exception as e:
|
330 |
-
aviso = st.sidebar.error(f"Error al procesar el archivo: {str(e)}")
|
331 |
-
time.sleep(3)
|
332 |
-
aviso.empty()
|
333 |
-
|
334 |
-
# ===========================
|
335 |
-
# Función para descargar archivo CSV
|
336 |
-
# ===========================
|
337 |
-
def downloadCSV(archivo_csv):
|
338 |
-
# Verificamos si el archivo ya ha sido descargado
|
339 |
-
if 'descargado' not in st.session_state:
|
340 |
-
st.session_state.descargado = False
|
341 |
-
|
342 |
-
if not st.session_state.descargado:
|
343 |
-
|
344 |
-
# Usamos st.spinner para mostrar un estado de descarga inicial
|
345 |
-
#with st.spinner("Preparando archivo para descarga..."):
|
346 |
-
# time.sleep(2) # Simulación de preparación del archivo
|
347 |
-
# Botón de descarga
|
348 |
-
descarga = st.sidebar.download_button(
|
349 |
-
label="Descargar archivo CSV",
|
350 |
-
data=open(archivo_csv, "rb"),
|
351 |
-
file_name="ventas.csv",
|
352 |
-
mime="text/csv"
|
353 |
-
)
|
354 |
-
|
355 |
-
if descarga:
|
356 |
-
# Marcamos el archivo como descargado
|
357 |
-
st.session_state.descargado = True
|
358 |
-
aviso = st.sidebar.success("¡Descarga completada!")
|
359 |
-
# Hacer que el mensaje desaparezca después de 2 segundos
|
360 |
-
time.sleep(3)
|
361 |
-
aviso.empty()
|
362 |
-
else:
|
363 |
-
aviso = st.sidebar.success("¡Ya has descargado el archivo!")
|
364 |
-
time.sleep(3)
|
365 |
-
aviso.empty()
|
366 |
-
|
367 |
-
# -------------------------------
|
368 |
-
# CREACIÓN DE AGENTE CSV
|
369 |
-
# -------------------------------
|
370 |
-
'''
|
371 |
-
def createCSVAgent(client, df):
|
372 |
-
temp_csv = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
|
373 |
-
df.to_csv(temp_csv.name, index=False)
|
374 |
-
agent = create_csv_agent(
|
375 |
-
client,
|
376 |
-
temp_csv.name,
|
377 |
-
verbose=False,
|
378 |
-
handle_parsing_errors=True
|
379 |
-
)
|
380 |
-
return agent
|
381 |
-
'''
|
382 |
-
'''
|
383 |
-
def callCSVAgent(client, prompt):
|
384 |
-
if "df_csv" not in st.session_state:
|
385 |
-
return "No hay CSV cargado aún."
|
386 |
-
|
387 |
-
df = st.session_state.df_csv
|
388 |
-
agente = createCSVAgent(client, df)
|
389 |
-
|
390 |
-
try:
|
391 |
-
respuesta = agente.run(prompt)
|
392 |
-
except Exception as e:
|
393 |
-
respuesta = f"Error al procesar la pregunta: {e}"
|
394 |
-
|
395 |
-
return respuesta
|
396 |
-
'''
|
397 |
-
|
398 |
-
# -------------------------------
|
399 |
-
# FUNCIÓN PARA DETECTAR REFERENCIA AL CSV
|
400 |
-
# -------------------------------
|
401 |
-
def detectedReferenceToCSV(prompt: str) -> bool:
|
402 |
-
palabras_clave = ["csv", "archivo", "contenido cargado", "file", "dataset"]
|
403 |
-
prompt_lower = prompt.lower()
|
404 |
-
return any(palabra in prompt_lower for palabra in palabras_clave)
|
405 |
-
|
406 |
-
# ===========================
|
407 |
-
# Función para interactuar con el bot
|
408 |
-
# ===========================
|
409 |
-
def chatBotProtech(client):
|
410 |
-
with st.sidebar.expander("📁 Chatbot"):
|
411 |
-
|
412 |
-
# Inicializar estados
|
413 |
-
if "chat_history" not in st.session_state:
|
414 |
-
st.session_state.chat_history = []
|
415 |
-
|
416 |
-
if "audio_data" not in st.session_state:
|
417 |
-
st.session_state.audio_data = None
|
418 |
-
|
419 |
-
if "transcripcion" not in st.session_state:
|
420 |
-
st.session_state.transcripcion = ""
|
421 |
-
|
422 |
-
if "mostrar_grabador" not in st.session_state:
|
423 |
-
st.session_state.mostrar_grabador = True
|
424 |
-
|
425 |
-
# Contenedor para mensajes
|
426 |
-
messages = st.container(height=400)
|
427 |
-
|
428 |
-
|
429 |
-
# CSS: estilo tipo Messenger
|
430 |
-
st.markdown("""
|
431 |
-
<style>
|
432 |
-
.chat-message {
|
433 |
-
display: flex;
|
434 |
-
align-items: flex-start;
|
435 |
-
margin: 10px 0;
|
436 |
-
}
|
437 |
-
.chat-message.user {
|
438 |
-
justify-content: flex-end;
|
439 |
-
}
|
440 |
-
.chat-message.assistant {
|
441 |
-
justify-content: flex-start;
|
442 |
-
}
|
443 |
-
.chat-icon {
|
444 |
-
width: 30px;
|
445 |
-
height: 30px;
|
446 |
-
border-radius: 50%;
|
447 |
-
background-color: #ccc;
|
448 |
-
display: flex;
|
449 |
-
align-items: center;
|
450 |
-
justify-content: center;
|
451 |
-
font-size: 18px;
|
452 |
-
margin: 0 5px;
|
453 |
-
}
|
454 |
-
.chat-bubble {
|
455 |
-
max-width: 70%;
|
456 |
-
padding: 10px 15px;
|
457 |
-
border-radius: 15px;
|
458 |
-
font-size: 14px;
|
459 |
-
line-height: 1.5;
|
460 |
-
word-wrap: break-word;
|
461 |
-
}
|
462 |
-
.chat-bubble.user {
|
463 |
-
background-color: #DCF8C6;
|
464 |
-
color: black;
|
465 |
-
border-top-right-radius: 0;
|
466 |
-
}
|
467 |
-
.chat-bubble.assistant {
|
468 |
-
background-color: #F1F0F0;
|
469 |
-
color: black;
|
470 |
-
border-top-left-radius: 0;
|
471 |
-
}
|
472 |
-
</style>
|
473 |
-
""", unsafe_allow_html=True)
|
474 |
-
|
475 |
-
# Mostrar historial de mensajes
|
476 |
-
with messages:
|
477 |
-
st.header("🤖 ChatBot Protech")
|
478 |
-
for message in st.session_state.chat_history:
|
479 |
-
role = message["role"]
|
480 |
-
content = html.escape(message["content"]) # Escapar contenido HTML
|
481 |
-
bubble_class = "user" if role == "user" else "assistant"
|
482 |
-
icon = "👤" if role == "user" else "🤖"
|
483 |
-
|
484 |
-
# Mostrar el mensaje en una sola burbuja con ícono en el mismo bloque
|
485 |
-
st.markdown(f"""
|
486 |
-
<div class="chat-message {bubble_class}">
|
487 |
-
<div class="chat-icon">{icon}</div>
|
488 |
-
<div class="chat-bubble {bubble_class}">{content}</div>
|
489 |
-
</div>
|
490 |
-
""", unsafe_allow_html=True)
|
491 |
-
|
492 |
-
# --- Manejar transcripción como mensaje automático ---
|
493 |
-
if st.session_state.transcripcion:
|
494 |
-
prompt = st.session_state.transcripcion
|
495 |
-
st.session_state.transcripcion = ""
|
496 |
-
|
497 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
498 |
-
|
499 |
-
with messages:
|
500 |
-
st.markdown(f"""
|
501 |
-
<div class="chat-message user">
|
502 |
-
<div class="chat-bubble user">{html.escape(prompt)}</div>
|
503 |
-
<div class="chat-icon">👤</div>
|
504 |
-
</div>
|
505 |
-
""", unsafe_allow_html=True)
|
506 |
-
|
507 |
-
with messages:
|
508 |
-
with st.spinner("Pensando..."):
|
509 |
-
completion = callDeepseek(client, prompt)
|
510 |
-
response = ""
|
511 |
-
response_placeholder = st.empty()
|
512 |
-
|
513 |
-
for chunk in completion:
|
514 |
-
content = chunk.choices[0].delta.content or ""
|
515 |
-
response += content
|
516 |
-
response_placeholder.markdown(f"""
|
517 |
-
<div class="chat-message assistant">
|
518 |
-
<div class="chat-icon">🤖</div>
|
519 |
-
<div class="chat-bubble assistant">{response}</div>
|
520 |
-
</div>
|
521 |
-
""", unsafe_allow_html=True)
|
522 |
-
|
523 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
524 |
-
|
525 |
-
# Captura del input tipo chat
|
526 |
-
if prompt := st.chat_input("Escribe algo..."):
|
527 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
528 |
-
|
529 |
-
# Mostrar mensaje del usuario escapado
|
530 |
-
with messages:
|
531 |
-
|
532 |
-
st.markdown(f"""
|
533 |
-
<div class="chat-message user">
|
534 |
-
<div class="chat-bubble user">{prompt}</div>
|
535 |
-
<div class="chat-icon">👤</div>
|
536 |
-
</div>
|
537 |
-
""", unsafe_allow_html=True)
|
538 |
-
|
539 |
-
# Mostrar respuesta del asistente
|
540 |
-
with messages:
|
541 |
-
with st.spinner("Pensando..."):
|
542 |
-
completion = callDeepseek(client, prompt)
|
543 |
-
response = ""
|
544 |
-
response_placeholder = st.empty()
|
545 |
-
|
546 |
-
for chunk in completion:
|
547 |
-
content = chunk.choices[0].delta.content or ""
|
548 |
-
response += content
|
549 |
-
|
550 |
-
response_placeholder.markdown(f"""
|
551 |
-
<div class="chat-message assistant">
|
552 |
-
<div class="chat-icon">🤖</div>
|
553 |
-
<div class="chat-bubble assistant">{response}</div>
|
554 |
-
</div>
|
555 |
-
""", unsafe_allow_html=True)
|
556 |
-
|
557 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
558 |
-
|
559 |
-
# Grabación de audio (solo si está habilitada)
|
560 |
-
if st.session_state.mostrar_grabador and st.session_state.audio_data is None:
|
561 |
-
audio_data = st.audio_input("Graba tu voz aquí 🎤")
|
562 |
-
if audio_data:
|
563 |
-
st.session_state.audio_data = audio_data
|
564 |
-
st.session_state.mostrar_grabador = False # Ocultar input después de grabar
|
565 |
-
st.rerun() # Forzar recarga para ocultar input y evitar que reaparezca el audio cargado
|
566 |
-
|
567 |
-
# Mostrar controles solo si hay audio cargado
|
568 |
-
if st.session_state.audio_data:
|
569 |
-
st.audio(st.session_state.audio_data, format="audio/wav")
|
570 |
-
col1, col2 = st.columns(2)
|
571 |
-
|
572 |
-
with col1:
|
573 |
-
if st.button("✅ Aceptar grabación"):
|
574 |
-
with st.spinner("Convirtiendo y transcribiendo..."):
|
575 |
-
m4a_path = converter_bytes_m4a(st.session_state.audio_data)
|
576 |
-
|
577 |
-
with open(m4a_path, "rb") as f:
|
578 |
-
texto = callWhisper(client, m4a_path, f)
|
579 |
-
|
580 |
-
os.remove(m4a_path)
|
581 |
-
|
582 |
-
st.session_state.transcripcion = texto
|
583 |
-
st.session_state.audio_data = None
|
584 |
-
st.session_state.mostrar_grabador = True
|
585 |
-
st.rerun()
|
586 |
-
|
587 |
-
with col2:
|
588 |
-
if st.button("❌ Descartar grabación"):
|
589 |
-
st.session_state.audio_data = None
|
590 |
-
st.session_state.transcripcion = ""
|
591 |
-
st.session_state.mostrar_grabador = True
|
592 |
-
st.rerun()
|
593 |
-
|
594 |
-
# Mostrar transcripción como texto previo al input si existe
|
595 |
-
'''
|
596 |
-
if st.session_state.transcripcion:
|
597 |
-
st.info(f"📝 Transcripción: {st.session_state.transcripcion}")
|
598 |
-
# Prellenar el input simuladamente
|
599 |
-
prompt = st.session_state.transcripcion
|
600 |
-
st.session_state.transcripcion = "" # Limpiar
|
601 |
-
st.rerun() # Simular que se envió el mensaje
|
602 |
-
'''
|
603 |
-
|
604 |
-
#def speechRecognition():
|
605 |
-
#audio_value = st.audio_input("Record a voice message")
|
606 |
-
|
607 |
-
def callDeepseek(client, prompt):
|
608 |
-
completion = client.chat.completions.create(
|
609 |
-
#model="meta-llama/llama-4-scout-17b-16e-instruct",
|
610 |
-
model = "deepseek-r1-distill-llama-70b",
|
611 |
-
messages=[{"role": "user", "content": prompt}],
|
612 |
-
temperature=0.6,
|
613 |
-
max_tokens=1024,
|
614 |
-
top_p=1,
|
615 |
-
stream=True,
|
616 |
-
)
|
617 |
-
return completion
|
618 |
-
|
619 |
-
def callWhisper(client, filename_audio,file):
|
620 |
-
transcription = client.audio.transcriptions.create(
|
621 |
-
file=(filename_audio, file.read()),
|
622 |
-
model="whisper-large-v3",
|
623 |
-
response_format="verbose_json",
|
624 |
-
)
|
625 |
-
return transcription.text
|
626 |
-
|
627 |
-
def converter_bytes_m4a(audio_bytes: BytesIO) -> str:
|
628 |
-
"""
|
629 |
-
Convierte un audio en bytes (WAV, etc.) a un archivo M4A temporal.
|
630 |
-
Retorna la ruta del archivo .m4a temporal.
|
631 |
-
"""
|
632 |
-
# Asegurarse de que el cursor del stream esté al inicio
|
633 |
-
audio_bytes.seek(0)
|
634 |
-
|
635 |
-
# Leer el audio desde BytesIO usando pydub
|
636 |
-
audio = AudioSegment.from_file(audio_bytes)
|
637 |
-
|
638 |
-
# Crear archivo temporal para guardar como .m4a
|
639 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".m4a")
|
640 |
-
m4a_path = temp_file.name
|
641 |
-
temp_file.close() # Cerramos para que pydub pueda escribirlo
|
642 |
-
|
643 |
-
# Exportar a M4A usando formato compatible con ffmpeg
|
644 |
-
audio.export(m4a_path, format="ipod") # 'ipod' genera .m4a
|
645 |
-
|
646 |
-
return m4a_path
|
647 |
-
# ===========================
|
648 |
-
# Función para cargar el modelo SARIMA
|
649 |
-
# ===========================
|
650 |
-
"""def cargar_modelo_sarima(ruta_modelo):
|
651 |
-
# Cargar el modelo utilizando joblib
|
652 |
-
modelo = joblib.load(ruta_modelo)
|
653 |
-
return modelo"""
|
654 |
-
|
655 |
-
# ===========================
|
656 |
-
# Función para obtener el número de periodos basado en el filtro
|
657 |
-
# ===========================
|
658 |
-
def obtener_periodos(filtro):
|
659 |
-
opciones_periodos = {
|
660 |
-
'5 años': 60,
|
661 |
-
'3 años': 36,
|
662 |
-
'1 año': 12,
|
663 |
-
'5 meses': 5
|
664 |
-
}
|
665 |
-
return opciones_periodos.get(filtro, 12)
|
666 |
-
|
667 |
-
# ===========================
|
668 |
-
# Función para mostrar ventas actuales y proyectadas
|
669 |
-
# ===========================
|
670 |
-
"""
|
671 |
-
def mostrar_ventas_proyectadas(filtro):
|
672 |
-
ruta_modelo = os.path.join("arima_sales_model.pkl")
|
673 |
-
modelo_sarima = cargar_modelo_sarima(ruta_modelo)
|
674 |
-
|
675 |
-
if "archivo_subido" in st.session_state and st.session_state.archivo_subido:
|
676 |
-
# Cargar datos del archivo subido
|
677 |
-
df = st.session_state.df_subido.copy()
|
678 |
-
df['Date'] = pd.to_datetime(df['Date'])
|
679 |
-
df = df.sort_values('Date')
|
680 |
-
|
681 |
-
# Generar predicciones
|
682 |
-
periodos = obtener_periodos(filtro)
|
683 |
-
predicciones = generar_predicciones(modelo_sarima, df, periodos)
|
684 |
-
|
685 |
-
# Redondear y formatear las ventas
|
686 |
-
df['Sale'] = df['Sale'].round(2).apply(lambda x: f"{x:,.2f}") # Formato con 2 decimales y comas
|
687 |
-
predicciones = [round(val, 2) for val in predicciones] # Redondear predicciones
|
688 |
-
|
689 |
-
# Preparar datos para graficar
|
690 |
-
df['Tipo'] = 'Ventas Actuales'
|
691 |
-
df_pred = pd.DataFrame({
|
692 |
-
'Date': pd.date_range(df['Date'].max(), periods=periodos + 1, freq='ME')[1:],
|
693 |
-
'Sale': predicciones,
|
694 |
-
'Tipo': 'Ventas Pronosticadas'
|
695 |
-
})
|
696 |
-
|
697 |
-
df_grafico = pd.concat([df[['Date', 'Sale', 'Tipo']], df_pred])
|
698 |
-
else:
|
699 |
-
st.warning("Por favor, sube un archivo CSV válido para generasr predicciones.")
|
700 |
-
return
|
701 |
-
|
702 |
-
# Crear gráfica
|
703 |
-
fig = px.line(
|
704 |
-
df_grafico,
|
705 |
-
x='Date',
|
706 |
-
y='Sale',
|
707 |
-
color='Tipo',
|
708 |
-
title='Ventas pronosticadas (Ventas vs Mes)',
|
709 |
-
labels={'Date': 'Fecha', 'Sale': 'Ventas', 'Tipo': 'Serie'}
|
710 |
-
)
|
711 |
-
|
712 |
-
# Centramos el título del gráfico
|
713 |
-
fig.update_layout(
|
714 |
-
title={
|
715 |
-
'text': "Ventas Actuales y Pronosticadas",
|
716 |
-
|
717 |
-
'x': 0.5, # Centrado horizontal
|
718 |
-
'xanchor': 'center', # Asegura el anclaje central
|
719 |
-
'yanchor': 'top' # Anclaje superior (opcional)
|
720 |
-
},
|
721 |
-
title_font=dict(size=18, family="Arial, sans-serif", color='black'),
|
722 |
-
)
|
723 |
-
|
724 |
-
fig.update_xaxes(tickangle=-45)
|
725 |
-
|
726 |
-
# Mejorar el diseño de la leyenda
|
727 |
-
fig.update_layout(
|
728 |
-
legend=dict(
|
729 |
-
title="Leyenda", # Título de la leyenda
|
730 |
-
title_font=dict(size=12, color="black"),
|
731 |
-
font=dict(size=10, color="black"),
|
732 |
-
bgcolor="rgba(240,240,240,0.8)", # Fondo semitransparente
|
733 |
-
bordercolor="gray",
|
734 |
-
borderwidth=1,
|
735 |
-
orientation="h", # Leyenda horizontal
|
736 |
-
yanchor="top",
|
737 |
-
y=-0.3, # Ajustar la posición vertical
|
738 |
-
xanchor="right",
|
739 |
-
x=0.5 # Centrar horizontalmente
|
740 |
-
)
|
741 |
-
)
|
742 |
-
|
743 |
-
st.plotly_chart(fig, use_container_width=True)
|
744 |
-
"""
|
745 |
-
# ===========================
|
746 |
-
# Función para generar predicciones
|
747 |
-
# ===========================
|
748 |
-
def generar_predicciones(modelo, df, periodos):
|
749 |
-
ventas = df['Sale']
|
750 |
-
predicciones = modelo.forecast(steps=periodos)
|
751 |
-
return predicciones
|
752 |
-
|
753 |
-
# Función para mejorar el diseño de las gráficas
|
754 |
-
def mejorar_diseno_grafica(fig, meses_relevantes, nombres_meses_relevantes):
|
755 |
-
fig.update_layout(
|
756 |
-
title={
|
757 |
-
'text': "Ventas vs Mes",
|
758 |
-
|
759 |
-
'x': 0.5, # Centrado horizontal
|
760 |
-
'xanchor': 'center', # Asegura el anclaje central
|
761 |
-
'yanchor': 'top' # Anclaje superior (opcional)
|
762 |
-
},
|
763 |
-
title_font=dict(size=18, family="Arial, sans-serif", color='black'),
|
764 |
-
xaxis=dict(
|
765 |
-
title='Mes-Año',
|
766 |
-
title_font=dict(size=14, family="Arial, sans-serif", color='black'),
|
767 |
-
tickangle=-45, # Rotar las etiquetas
|
768 |
-
showgrid=True,
|
769 |
-
gridwidth=0.5,
|
770 |
-
gridcolor='lightgrey',
|
771 |
-
showline=True,
|
772 |
-
linecolor='black',
|
773 |
-
linewidth=2,
|
774 |
-
tickmode='array', # Controla qué etiquetas mostrar
|
775 |
-
tickvals=meses_relevantes, # Selecciona solo los meses relevantes
|
776 |
-
ticktext=nombres_meses_relevantes, # Meses seleccionados
|
777 |
-
tickfont=dict(size=10), # Reducir el tamaño de la fuente de las etiquetas
|
778 |
-
),
|
779 |
-
yaxis=dict(
|
780 |
-
title='Ventas',
|
781 |
-
title_font=dict(size=14, family="Arial, sans-serif", color='black'),
|
782 |
-
showgrid=True,
|
783 |
-
gridwidth=0.5,
|
784 |
-
gridcolor='lightgrey',
|
785 |
-
showline=True,
|
786 |
-
linecolor='black',
|
787 |
-
linewidth=2
|
788 |
-
),
|
789 |
-
plot_bgcolor='white', # Fondo blanco
|
790 |
-
paper_bgcolor='white', # Fondo del lienzo de la gráfica
|
791 |
-
font=dict(family="Arial, sans-serif", size=12, color="black"),
|
792 |
-
showlegend=False, # Desactivar la leyenda si no es necesaria
|
793 |
-
margin=dict(l=50, r=50, t=50, b=50) # Márgenes ajustados
|
794 |
-
)
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
return fig
|
799 |
-
|
800 |
-
# ===========================
|
801 |
-
# Función para cerrar sesión
|
802 |
-
# ===========================
|
803 |
-
def cerrar_sesion():
|
804 |
-
st.session_state.logged_in = False
|
805 |
-
st.session_state.usuario = None
|
806 |
-
st.session_state.pagina_actual = "login"
|
807 |
-
st.session_state.archivo_subido = False # Limpiar el archivo subido al cerrar sesión
|
808 |
-
st.session_state.df_subido = None # Limpiar datos del archivo
|
809 |
-
# Eliminar parámetros de la URL usando st.query_params
|
810 |
-
st.query_params.clear() # Método correcto para limpiar parámetros de consulta
|
811 |
-
|
812 |
-
# Redirigir a la página de login
|
813 |
-
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
paginas/dashboardDemo.py
DELETED
@@ -1,947 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import plotly.express as px
|
4 |
-
import random
|
5 |
-
import time
|
6 |
-
import joblib
|
7 |
-
import os
|
8 |
-
import statsmodels
|
9 |
-
from dotenv import load_dotenv
|
10 |
-
import os
|
11 |
-
from groq import Groq
|
12 |
-
import html
|
13 |
-
from pydub import AudioSegment
|
14 |
-
import tempfile
|
15 |
-
from io import BytesIO
|
16 |
-
from fpdf import FPDF
|
17 |
-
from PIL import Image
|
18 |
-
from math import ceil
|
19 |
-
from datetime import datetime
|
20 |
-
from sklearn.metrics import r2_score
|
21 |
-
#from langchain.agents.agent_toolkits import create_csv_agent
|
22 |
-
#from langchain_groq import ChatGroq
|
23 |
-
# ===========================
|
24 |
-
# Función para generar datos ficticios
|
25 |
-
# ===========================
|
26 |
-
def generar_datos():
|
27 |
-
meses = [
|
28 |
-
"Enero", "Febrero", "Marzo", "Abril", "Mayo", "Junio",
|
29 |
-
"Julio", "Agosto", "Septiembre", "Octubre", "Noviembre", "Diciembre"
|
30 |
-
]
|
31 |
-
paises = ["México", "Colombia", "Argentina", "Chile", "Perú"]
|
32 |
-
data = [
|
33 |
-
{"mes": mes, "pais": pais, "Total": random.randint(100, 1000)}
|
34 |
-
for mes in meses for pais in paises
|
35 |
-
]
|
36 |
-
return pd.DataFrame(data), meses, paises
|
37 |
-
|
38 |
-
|
39 |
-
# ===========================
|
40 |
-
# Función para el dashboard principal
|
41 |
-
# ===========================
|
42 |
-
def mostrar_dashboard():
|
43 |
-
# Cargar variables desde el archivo .env
|
44 |
-
load_dotenv()
|
45 |
-
|
46 |
-
# Acceder a la clave
|
47 |
-
groq_key = os.getenv("GROQ_API_KEY")
|
48 |
-
client = Groq(api_key=groq_key)
|
49 |
-
|
50 |
-
dfDatos, meses, paises = generar_datos()
|
51 |
-
|
52 |
-
# Opciones del selectbox
|
53 |
-
lista_opciones = ['5 años', '3 años', '1 año', '5 meses']
|
54 |
-
|
55 |
-
# Mostrar barra lateral
|
56 |
-
mostrar_sidebar(client)
|
57 |
-
|
58 |
-
# Título principal
|
59 |
-
st.header(':bar_chart: Dashboard Sales')
|
60 |
-
|
61 |
-
# Mostrar gráficos
|
62 |
-
mostrar_graficos(lista_opciones)
|
63 |
-
|
64 |
-
# ===========================
|
65 |
-
# Configuración inicial de la página
|
66 |
-
# ===========================
|
67 |
-
#def configurar_pagina():
|
68 |
-
#st.set_page_config(
|
69 |
-
# page_title="Dashboard Sales",
|
70 |
-
# page_icon=":smile:",
|
71 |
-
# layout="wide",
|
72 |
-
# initial_sidebar_state="expanded"
|
73 |
-
#)
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# ===========================
|
78 |
-
# Función para la barra lateral
|
79 |
-
# ===========================
|
80 |
-
def mostrar_sidebar(client):
|
81 |
-
"""
|
82 |
-
Windows
|
83 |
-
sidebar_logo = "paginas/images/Logo general.png"
|
84 |
-
main_body_logo = "paginas/images/Logo.png"
|
85 |
-
sidebar_logo_dashboard = "paginas/images/Logo dashboard.png"
|
86 |
-
|
87 |
-
"""
|
88 |
-
sidebar_logo = "paginas/images/Logo general.png"
|
89 |
-
main_body_logo = "paginas/images/Logo.png"
|
90 |
-
sidebar_logo_dashboard = "paginas/images/Logo dashboard.png"
|
91 |
-
|
92 |
-
|
93 |
-
st.logo(sidebar_logo, size="large", icon_image=main_body_logo)
|
94 |
-
|
95 |
-
st.sidebar.image(sidebar_logo_dashboard)
|
96 |
-
st.sidebar.title('🧠 GenAI Forecast')
|
97 |
-
|
98 |
-
uploaded_file = selectedFile()
|
99 |
-
verifyFile(uploaded_file)
|
100 |
-
archivo_csv = "df_articles.csv"
|
101 |
-
chatBotProtech(client)
|
102 |
-
downloadCSV(archivo_csv)
|
103 |
-
closeSession()
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
def closeSession():
|
108 |
-
if st.sidebar.button("Cerrar Sesión"):
|
109 |
-
cerrar_sesion()
|
110 |
-
|
111 |
-
|
112 |
-
def guardar_graficas_como_imagen(figuras: dict):
|
113 |
-
rutas_imagenes = []
|
114 |
-
temp_dir = tempfile.gettempdir()
|
115 |
-
|
116 |
-
for nombre, figura in figuras.items():
|
117 |
-
ruta_png = os.path.join(temp_dir, f"{nombre}.png")
|
118 |
-
ruta_jpeg = os.path.join(temp_dir, f"{nombre}.jpg")
|
119 |
-
|
120 |
-
# Guardar como PNG primero
|
121 |
-
figura.write_image(ruta_png, width=900, height=500, engine="kaleido")
|
122 |
-
|
123 |
-
# Convertir a JPEG usando PIL
|
124 |
-
with Image.open(ruta_png) as img:
|
125 |
-
rgb_img = img.convert("RGB") # Asegura formato compatible con JPEG
|
126 |
-
rgb_img.save(ruta_jpeg, "JPEG", quality=95)
|
127 |
-
|
128 |
-
rutas_imagenes.append((nombre, ruta_jpeg))
|
129 |
-
|
130 |
-
# Opcional: borrar el PNG temporal
|
131 |
-
os.remove(ruta_png)
|
132 |
-
|
133 |
-
return rutas_imagenes
|
134 |
-
|
135 |
-
def generateHeaderPDF(pdf):
|
136 |
-
# Logo
|
137 |
-
logo_path = r"paginas\images\Logo general.png"
|
138 |
-
if os.path.exists(logo_path):
|
139 |
-
pdf.image(logo_path, x=7, y=6, w=35)
|
140 |
-
|
141 |
-
# Título centrado
|
142 |
-
pdf.set_font('Arial', 'B', 16)
|
143 |
-
pdf.set_xy(5, 10)
|
144 |
-
pdf.cell(w=0, h=10, txt="Reporte del Dashboard de Ventas", border=0, ln=0, align='C')
|
145 |
-
|
146 |
-
# Fecha lado derecho
|
147 |
-
fecha = datetime.now().strftime("%d/%m/%Y")
|
148 |
-
pdf.set_xy(-40, 5)
|
149 |
-
pdf.set_font('Arial', '', 10)
|
150 |
-
pdf.cell(w=30, h=10, txt=fecha, border=0, ln=0, align='R')
|
151 |
-
|
152 |
-
pdf.ln(15)
|
153 |
-
|
154 |
-
def generateFooterPDF(pdf):
|
155 |
-
pdf.set_y(-30)
|
156 |
-
pdf.set_font('Arial', 'I', 8)
|
157 |
-
pdf.set_text_color(100)
|
158 |
-
pdf.cell(0, 5, "PRO TECHNOLOGY SOLUTIONS S.A.C - Área de ventas", 0, 1, 'C')
|
159 |
-
pdf.cell(0, 5, "Reporte generado automáticamente por el sistema de análisis", 0, 1, 'C')
|
160 |
-
pdf.cell(0, 5, f"Página {pdf.page_no()}", 0, 0, 'C')
|
161 |
-
|
162 |
-
def generateContentPDF(pdf, imagenes):
|
163 |
-
for i in range(0, len(imagenes), 2):
|
164 |
-
pdf.add_page()
|
165 |
-
|
166 |
-
generateHeaderPDF(pdf)
|
167 |
-
|
168 |
-
# Primera imagen
|
169 |
-
titulo1, ruta1 = imagenes[i]
|
170 |
-
if os.path.exists(ruta1):
|
171 |
-
img1 = Image.open(ruta1).convert("RGB")
|
172 |
-
ruta_color1 = ruta1.replace(".png", "_color.png")
|
173 |
-
img1.save(ruta_color1)
|
174 |
-
pdf.image(ruta_color1, x=10, y=30, w=180)
|
175 |
-
|
176 |
-
# Segunda imagen
|
177 |
-
if i + 1 < len(imagenes):
|
178 |
-
titulo2, ruta2 = imagenes[i + 1]
|
179 |
-
if os.path.exists(ruta2):
|
180 |
-
img2 = Image.open(ruta2).convert("RGB")
|
181 |
-
ruta_color2 = ruta2.replace(".png", "_color.png")
|
182 |
-
img2.save(ruta_color2)
|
183 |
-
pdf.image(ruta_color2, x=10, y=150, w=180)
|
184 |
-
|
185 |
-
generateFooterPDF(pdf)
|
186 |
-
|
187 |
-
def generar_reporte_dashboard(imagenes):
|
188 |
-
pdf = FPDF(orientation='P', unit='mm', format='A4')
|
189 |
-
pdf.set_auto_page_break(auto=True, margin=15)
|
190 |
-
|
191 |
-
generateContentPDF(pdf, imagenes)
|
192 |
-
|
193 |
-
ruta_pdf = "reporte.pdf"
|
194 |
-
pdf.output(ruta_pdf)
|
195 |
-
return ruta_pdf
|
196 |
-
|
197 |
-
|
198 |
-
# Función para obtener los meses relevantes
|
199 |
-
def obtener_meses_relevantes(df):
|
200 |
-
# Extraemos los años y meses de la columna 'Date'
|
201 |
-
df['Year'] = pd.to_datetime(df['orddt']).dt.year
|
202 |
-
df['Month'] = pd.to_datetime(df['orddt']).dt.month
|
203 |
-
|
204 |
-
# Encontramos el primer y último año en el dataset
|
205 |
-
primer_ano = df['Year'].min()
|
206 |
-
ultimo_ano = df['Year'].max()
|
207 |
-
|
208 |
-
meses_relevantes = []
|
209 |
-
nombres_meses_relevantes = []
|
210 |
-
|
211 |
-
# Recorrer todos los años dentro del rango
|
212 |
-
for ano in range(primer_ano, ultimo_ano + 1):
|
213 |
-
for mes in [1, 4, 7, 10]: # Meses relevantes: enero (1), abril (4), julio (7), octubre (10)
|
214 |
-
if mes in df[df['Year'] == ano]['Month'].values:
|
215 |
-
# Obtener el nombre del mes
|
216 |
-
nombre_mes = pd.to_datetime(f"{ano}-{mes}-01").strftime('%B') # Mes en formato textual (Enero, Abril, etc.)
|
217 |
-
meses_relevantes.append(f"{nombre_mes}-{ano}")
|
218 |
-
nombres_meses_relevantes.append(f"{nombre_mes}-{ano}")
|
219 |
-
|
220 |
-
return meses_relevantes, nombres_meses_relevantes
|
221 |
-
|
222 |
-
|
223 |
-
# ===========================
|
224 |
-
# Función para gráficos
|
225 |
-
# ===========================
|
226 |
-
def mostrar_graficos(lista_opciones):
|
227 |
-
if "archivo_subido" not in st.session_state or not st.session_state.archivo_subido:
|
228 |
-
st.warning("Por favor, sube un archivo CSV válido para visualizar los gráficos.")
|
229 |
-
return
|
230 |
-
|
231 |
-
df = st.session_state.df_subido.copy()
|
232 |
-
|
233 |
-
# --- Tarjetas con métricas clave ---
|
234 |
-
# Tasa de crecimiento por fecha si existe
|
235 |
-
total_ventas = df["sales"].sum()
|
236 |
-
promedio_ventas = df["sales"].mean()
|
237 |
-
|
238 |
-
st.subheader("📈 Resumen General")
|
239 |
-
|
240 |
-
|
241 |
-
# Tasa de crecimiento por fecha si existe
|
242 |
-
df['orddt'] = pd.to_datetime(df['orddt'], errors='coerce')
|
243 |
-
|
244 |
-
#Total de ventas
|
245 |
-
total_ventas = df['sales'].sum()
|
246 |
-
promedio_ventas = df['sales'].mean()
|
247 |
-
total_registros = df.shape[0]
|
248 |
-
|
249 |
-
# Tasa de crecimiento
|
250 |
-
df_filtrado = df.dropna(subset=['orddt'])
|
251 |
-
df_filtrado['mes_anio'] = df_filtrado['orddt'].dt.to_period('M')
|
252 |
-
ventas_por_mes = df_filtrado.groupby('mes_anio')['sales'].sum().sort_index()
|
253 |
-
|
254 |
-
tasa_crecimiento = None
|
255 |
-
if len(ventas_por_mes) >= 2:
|
256 |
-
primera_venta = ventas_por_mes.iloc[0]
|
257 |
-
ultima_venta = ventas_por_mes.iloc[-1]
|
258 |
-
if primera_venta != 0:
|
259 |
-
tasa_crecimiento = ((ultima_venta - primera_venta) / primera_venta) * 100
|
260 |
-
|
261 |
-
tarjetas = [
|
262 |
-
{"titulo": "Total de Ventas", "valor": abreviar_monto(total_ventas), "color": "#4CAF50"},
|
263 |
-
{"titulo": "Promedio de Ventas", "valor": f"${promedio_ventas:,.0f}", "color": "#2196F3"},
|
264 |
-
{"titulo": "Ventas registradas", "valor": total_registros, "color": "#9C27B0"},
|
265 |
-
{"titulo": "Tasa de crecimiento", "valor": f"{tasa_crecimiento:.2f}%" if tasa_crecimiento is not None else "N/A", "color": "#FF5722"},
|
266 |
-
]
|
267 |
-
|
268 |
-
col1, col2, col3, col4 = st.columns(4)
|
269 |
-
cols = [col1, col2, col3, col4]
|
270 |
-
|
271 |
-
for i, tarjeta in enumerate(tarjetas):
|
272 |
-
with cols[i]:
|
273 |
-
st.markdown(f"""
|
274 |
-
<div style='background-color:{tarjeta["color"]}; padding:20px; border-radius:10px; color:white; text-align:center;'>
|
275 |
-
<h4 style='margin:0;'>{tarjeta["titulo"]}</h4>
|
276 |
-
<h2 style='margin:0;'>{tarjeta["valor"]}</h2>
|
277 |
-
</div>
|
278 |
-
""", unsafe_allow_html=True)
|
279 |
-
|
280 |
-
st.markdown("---")
|
281 |
-
|
282 |
-
# Opciones de modelos (incluye una opción por defecto)
|
283 |
-
opciones_modelos = ["(Sin predicción)"] + ["LightGBM", "XGBoost",
|
284 |
-
"HistGradientBoosting",
|
285 |
-
"MLPRegressor", "GradientBoosting",
|
286 |
-
"RandomForest", "CatBoost"]
|
287 |
-
|
288 |
-
col_select, col_plot = st.columns([1, 5])
|
289 |
-
|
290 |
-
with col_select:
|
291 |
-
modelo_seleccionado = st.selectbox("Selecciona un modelo", opciones_modelos)
|
292 |
-
|
293 |
-
with col_plot.container(border=True):
|
294 |
-
if modelo_seleccionado == "(Sin predicción)":
|
295 |
-
if modelo_seleccionado == "(Sin predicción)":
|
296 |
-
df_real = df.copy()
|
297 |
-
df_real = df_real.dropna(subset=["orddt", "sales"])
|
298 |
-
|
299 |
-
fig_real = px.scatter(
|
300 |
-
df_real,
|
301 |
-
x="orddt",
|
302 |
-
y="sales",
|
303 |
-
trendline="ols", # Línea de regresión
|
304 |
-
color_discrete_sequence=["#1f77b4"],
|
305 |
-
trendline_color_override="orange",
|
306 |
-
labels={"sales": "Ventas", "orddt": "Fecha"},
|
307 |
-
title="Ventas Reales (Dispersión + Tendencia)",
|
308 |
-
width=600,
|
309 |
-
height=400
|
310 |
-
)
|
311 |
-
|
312 |
-
fig_real.update_traces(marker=dict(size=6), selector=dict(mode='markers'))
|
313 |
-
fig_real.update_layout(
|
314 |
-
template="plotly_white",
|
315 |
-
margin=dict(l=40, r=40, t=60, b=40),
|
316 |
-
legend_title_text="Datos",
|
317 |
-
showlegend=True
|
318 |
-
)
|
319 |
-
|
320 |
-
st.plotly_chart(fig_real, use_container_width=True)
|
321 |
-
|
322 |
-
else:
|
323 |
-
# Cargar modelo .pkl correspondiente
|
324 |
-
modelo_path = f"regressionmodels/{modelo_seleccionado.lower()}.pkl"
|
325 |
-
modelo = joblib.load(modelo_path)
|
326 |
-
|
327 |
-
# Preparar datos
|
328 |
-
df_pred = df.copy()
|
329 |
-
df_pred = df_pred.dropna(subset=["orddt"])
|
330 |
-
X_nuevo = df_pred.drop(columns=["sales"]) # Asegúrate que coincida con el modelo
|
331 |
-
y_pred = modelo.predict(X_nuevo)
|
332 |
-
df_pred["pred"] = y_pred
|
333 |
-
|
334 |
-
# Calcular precisión del modelo
|
335 |
-
r2 = r2_score(df_pred["sales"], df_pred["pred"])
|
336 |
-
|
337 |
-
# Gráfico de dispersión con línea de regresión
|
338 |
-
fig_pred = px.scatter(
|
339 |
-
df_pred,
|
340 |
-
x="sales",
|
341 |
-
y="pred",
|
342 |
-
trendline="ols",
|
343 |
-
color_discrete_sequence=["#1f77b4"],
|
344 |
-
trendline_color_override="orange",
|
345 |
-
labels={"sales": "Ventas Reales", "pred": "Ventas Predichas"},
|
346 |
-
title=f"Ventas Reales vs Predicción ({modelo_seleccionado})<br><sup>Precisión (R²): {r2:.3f}</sup>",
|
347 |
-
width=600, height=400
|
348 |
-
)
|
349 |
-
fig_pred.update_traces(marker=dict(size=6), selector=dict(mode='markers'))
|
350 |
-
fig_pred.update_layout(
|
351 |
-
legend_title_text='Datos',
|
352 |
-
template="plotly_white",
|
353 |
-
showlegend=True
|
354 |
-
)
|
355 |
-
st.plotly_chart(fig_pred, use_container_width=True)
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
# Fila 1: 3 gráficas
|
360 |
-
col1, col2 = st.columns(2)
|
361 |
-
with col1:
|
362 |
-
with col1.container(border=True):
|
363 |
-
fig1 = px.histogram(df, x='sales', title='Distribución de Ventas',
|
364 |
-
color_discrete_sequence=['#1f77b4'])
|
365 |
-
|
366 |
-
fig1.update_layout(
|
367 |
-
template="plotly_white",
|
368 |
-
margin=dict(l=40, r=40, t=60, b=40),
|
369 |
-
width=600,
|
370 |
-
height=400,
|
371 |
-
legend_title_text="Leyenda"
|
372 |
-
)
|
373 |
-
fig1.update_traces(marker=dict(line=dict(width=0.5, color='white')))
|
374 |
-
|
375 |
-
st.plotly_chart(fig1, use_container_width=True)
|
376 |
-
|
377 |
-
with col2:
|
378 |
-
with col2.container(border=True):
|
379 |
-
fig2 = px.box(df, x='segmt', y='sales', title='Ventas por Segmento',
|
380 |
-
color='segmt', color_discrete_sequence=px.colors.qualitative.Plotly)
|
381 |
-
st.plotly_chart(fig2, use_container_width=True)
|
382 |
-
|
383 |
-
# Fila 2: 2 gráficas
|
384 |
-
col4, col5 = st.columns(2)
|
385 |
-
with col4:
|
386 |
-
with col4.container(border=True):
|
387 |
-
fig4 = px.pie(df, names='categ', values='sales', title='Ventas por Categoría',
|
388 |
-
color_discrete_sequence=px.colors.qualitative.Set3)
|
389 |
-
st.plotly_chart(fig4, use_container_width=True)
|
390 |
-
|
391 |
-
with col5:
|
392 |
-
top_productos = (
|
393 |
-
df.groupby('prdna')['sales']
|
394 |
-
.sum()
|
395 |
-
.sort_values(ascending=False)
|
396 |
-
.head(10)
|
397 |
-
.reset_index()
|
398 |
-
)
|
399 |
-
with col5.container(border=True):
|
400 |
-
fig5 = px.bar(
|
401 |
-
top_productos,
|
402 |
-
x='sales',
|
403 |
-
y='prdna',
|
404 |
-
orientation='h',
|
405 |
-
title='Top 10 productos más vendidos',
|
406 |
-
labels={'sales': 'Ventas', 'prdna': 'Producto'},
|
407 |
-
color='sales',
|
408 |
-
color_continuous_scale='Blues'
|
409 |
-
)
|
410 |
-
|
411 |
-
fig5.update_layout(yaxis={'categoryorder': 'total ascending'})
|
412 |
-
st.plotly_chart(fig5, use_container_width=True)
|
413 |
-
|
414 |
-
col6, col7 = st.columns(2)
|
415 |
-
with col6:
|
416 |
-
with col6.container(border=True):
|
417 |
-
tabla = df.pivot_table(index='state', columns='subct', values='sales', aggfunc='sum').fillna(0)
|
418 |
-
|
419 |
-
if not tabla.empty:
|
420 |
-
tabla = tabla.astype(float)
|
421 |
-
fig6 = px.imshow(
|
422 |
-
tabla.values,
|
423 |
-
labels=dict(x="Categoría", y="Estado", color="Ventas"),
|
424 |
-
x=tabla.columns,
|
425 |
-
y=tabla.index,
|
426 |
-
text_auto=True,
|
427 |
-
title="Mapa de Calor: Ventas por distrito y categoría",
|
428 |
-
color_continuous_scale="Viridis"
|
429 |
-
)
|
430 |
-
st.plotly_chart(fig6, use_container_width=True)
|
431 |
-
else:
|
432 |
-
st.warning("No hay datos suficientes para mostrar el mapa de calor.")
|
433 |
-
|
434 |
-
with col7:
|
435 |
-
ventas_estado = df.groupby('state')['sales'].sum().reset_index()
|
436 |
-
with col7.container(border=True):
|
437 |
-
fig7 = px.bar(ventas_estado, x='state', y='sales', title='Ventas por distrito',
|
438 |
-
color='sales', color_continuous_scale='Teal')
|
439 |
-
st.plotly_chart(fig7, use_container_width=True)
|
440 |
-
|
441 |
-
if st.button("📄 Generar Reporte PDF del Dashboard"):
|
442 |
-
figs = [fig1, fig2, fig4, fig5, fig6, fig7]
|
443 |
-
|
444 |
-
figuras = {}
|
445 |
-
for fig in figs:
|
446 |
-
titulo = fig.layout.title.text or "Sin Título"
|
447 |
-
figuras[titulo] = fig
|
448 |
-
|
449 |
-
st.info("Generando imágenes de las gráficas...")
|
450 |
-
imagenes = guardar_graficas_como_imagen(figuras)
|
451 |
-
st.info("Generando PDF...")
|
452 |
-
ruta_pdf = generar_reporte_dashboard(imagenes)
|
453 |
-
|
454 |
-
with open(ruta_pdf, "rb") as f:
|
455 |
-
st.download_button("⬇️ Descargar Reporte PDF", f, file_name="reporte_dashboard.pdf")
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
def abreviar_monto(valor):
|
460 |
-
if valor >= 1_000_000:
|
461 |
-
return f"${valor / 1_000_000:.2f}M"
|
462 |
-
elif valor >= 1_000:
|
463 |
-
return f"${valor / 1_000:.2f}K"
|
464 |
-
else:
|
465 |
-
return f"${valor:.2f}"
|
466 |
-
|
467 |
-
# -------------------------------
|
468 |
-
# CARGA DE CSV Y GUARDADO EN SESIÓN
|
469 |
-
# -------------------------------
|
470 |
-
|
471 |
-
def loadCSV():
|
472 |
-
columnas_requeridas = [
|
473 |
-
'rowid','ordid','orddt','shpdt',
|
474 |
-
'segmt','state','cono','prodid',
|
475 |
-
'categ','subct','prdna','sales',
|
476 |
-
'order_month','order_day','order_year',
|
477 |
-
'order_dayofweek','shipping_delay'
|
478 |
-
]
|
479 |
-
with st.sidebar.expander("📁 Subir archivo"):
|
480 |
-
uploaded_file = st.file_uploader("Sube un archivo CSV:", type=["csv"], key="upload_csv")
|
481 |
-
|
482 |
-
if uploaded_file is not None:
|
483 |
-
# Reseteamos el estado de 'descargado' cuando se sube un archivo
|
484 |
-
st.session_state.descargado = False
|
485 |
-
st.session_state.archivo_subido = False # Reinicia el estado
|
486 |
-
try:
|
487 |
-
# Leer el archivo subido
|
488 |
-
df = pd.read_csv(uploaded_file)
|
489 |
-
|
490 |
-
# Verificar que las columnas estén presentes y en el orden correcto
|
491 |
-
if list(df.columns) == columnas_requeridas:
|
492 |
-
st.session_state.df_subido = df
|
493 |
-
st.session_state.archivo_subido = True
|
494 |
-
aviso = st.sidebar.success("✅ Archivo subido correctamente.")
|
495 |
-
time.sleep(3)
|
496 |
-
aviso.empty()
|
497 |
-
|
498 |
-
|
499 |
-
else:
|
500 |
-
st.session_state.archivo_subido = False
|
501 |
-
aviso = st.sidebar.error(f"El archivo no tiene las columnas requeridas: {columnas_requeridas}.")
|
502 |
-
time.sleep(3)
|
503 |
-
aviso.empty()
|
504 |
-
|
505 |
-
except Exception as e:
|
506 |
-
aviso = st.sidebar.error(f"Error al procesar el archivo: {str(e)}")
|
507 |
-
time.sleep(3)
|
508 |
-
aviso.empty()
|
509 |
-
|
510 |
-
# -------------------------------
|
511 |
-
# Mostrar uploader y manejar estado
|
512 |
-
# -------------------------------
|
513 |
-
def selectedFile():
|
514 |
-
with st.sidebar.expander("📁 Subir archivo"):
|
515 |
-
uploaded_file = st.file_uploader("Sube un archivo CSV:", type=["csv"], key="upload_csv")
|
516 |
-
|
517 |
-
if uploaded_file is not None:
|
518 |
-
st.session_state.descargado = False
|
519 |
-
st.session_state.archivo_subido = False
|
520 |
-
return uploaded_file
|
521 |
-
return None
|
522 |
-
|
523 |
-
# -------------------------------
|
524 |
-
# Procesar y validar archivo (con cache)
|
525 |
-
# -------------------------------
|
526 |
-
@st.cache_data
|
527 |
-
def loadCSV(uploaded_file):
|
528 |
-
columnas_requeridas = [
|
529 |
-
'rowid','ordid','orddt','shpdt',
|
530 |
-
'segmt','state','cono','prodid',
|
531 |
-
'categ','subct','prdna','sales',
|
532 |
-
'order_month','order_day','order_year',
|
533 |
-
'order_dayofweek','shipping_delay'
|
534 |
-
]
|
535 |
-
|
536 |
-
df = pd.read_csv(uploaded_file)
|
537 |
-
|
538 |
-
if list(df.columns) == columnas_requeridas:
|
539 |
-
return df, None
|
540 |
-
else:
|
541 |
-
return None, f"❌ El archivo no tiene las columnas requeridas: {columnas_requeridas}"
|
542 |
-
|
543 |
-
# -------------------------------
|
544 |
-
# Procesar y validar archivo (con cache)
|
545 |
-
# -------------------------------
|
546 |
-
def verifyFile(uploadedFile):
|
547 |
-
if uploadedFile:
|
548 |
-
try:
|
549 |
-
df, error = loadCSV(uploadedFile)
|
550 |
-
if error is None:
|
551 |
-
st.session_state.df_subido = df
|
552 |
-
st.session_state.archivo_subido = True
|
553 |
-
aviso = st.sidebar.success("✅ Archivo subido correctamente.")
|
554 |
-
else:
|
555 |
-
aviso = st.sidebar.error(error)
|
556 |
-
time.sleep(3)
|
557 |
-
aviso.empty()
|
558 |
-
|
559 |
-
except Exception as e:
|
560 |
-
aviso = st.sidebar.error(f"⚠️ Error al procesar el archivo: {str(e)}")
|
561 |
-
time.sleep(3)
|
562 |
-
aviso.empty()
|
563 |
-
|
564 |
-
# ===========================
|
565 |
-
# Función para descargar archivo CSV
|
566 |
-
# ===========================
|
567 |
-
def downloadCSV(archivo_csv):
|
568 |
-
# Verificamos si el archivo ya ha sido descargado
|
569 |
-
if 'descargado' not in st.session_state:
|
570 |
-
st.session_state.descargado = False
|
571 |
-
|
572 |
-
if not st.session_state.descargado:
|
573 |
-
descarga = st.sidebar.download_button(
|
574 |
-
label="Descargar archivo CSV",
|
575 |
-
data=open(archivo_csv, "rb"),
|
576 |
-
file_name="ventas.csv",
|
577 |
-
mime="text/csv"
|
578 |
-
)
|
579 |
-
if descarga:
|
580 |
-
# Marcamos el archivo como descargado
|
581 |
-
st.session_state.descargado = True
|
582 |
-
aviso = st.sidebar.success("¡Descarga completada!")
|
583 |
-
# Hacer que el mensaje desaparezca después de 2 segundos
|
584 |
-
time.sleep(3)
|
585 |
-
aviso.empty()
|
586 |
-
else:
|
587 |
-
aviso = st.sidebar.success("¡Ya has descargado el archivo!")
|
588 |
-
time.sleep(3)
|
589 |
-
aviso.empty()
|
590 |
-
|
591 |
-
# -------------------------------
|
592 |
-
# FUNCIÓN PARA DETECTAR REFERENCIA AL CSV
|
593 |
-
# -------------------------------
|
594 |
-
def detectedReferenceToCSV(prompt: str) -> bool:
|
595 |
-
palabras_clave = ["csv", "archivo", "contenido cargado", "file", "dataset"]
|
596 |
-
prompt_lower = prompt.lower()
|
597 |
-
return any(palabra in prompt_lower for palabra in palabras_clave)
|
598 |
-
|
599 |
-
# ===========================
|
600 |
-
# Función para interactuar con el bot
|
601 |
-
# ===========================
|
602 |
-
def seleccionar_modelo_llm():
|
603 |
-
modelos_disponibles = {
|
604 |
-
"Alibaba Cloud - Qwen QWQ 32B": "qwen-qwq-32b",
|
605 |
-
"Alibaba Cloud - Qwen3 32B": "qwen/qwen3-32b",
|
606 |
-
"DeepSeek - LLaMA 70B Distill": "deepseek-r1-distill-llama-70b",
|
607 |
-
"Google - Gemma2 9B IT": "gemma2-9b-it",
|
608 |
-
"Meta - LLaMA 3.1 8B Instant": "llama-3.1-8b-instant",
|
609 |
-
"Meta - LLaMA 3.3 70B Versatile": "llama-3.3-70b-versatile",
|
610 |
-
"Meta - LLaMA 3 70B": "llama3-70b-8192",
|
611 |
-
"Meta - LLaMA 3 8B": "llama3-8b-8192",
|
612 |
-
"Meta - LLaMA 4 Maverick 17B": "meta-llama/llama-4-maverick-17b-128e-instruct",
|
613 |
-
"Meta - LLaMA 4 Scout 17B": "meta-llama/llama-4-scout-17b-16e-instruct",
|
614 |
-
"Meta - LLaMA Guard 4 12B": "meta-llama/llama-guard-4-12b",
|
615 |
-
"Meta - Prompt Guard 2 22M": "meta-llama/llama-prompt-guard-2-22m",
|
616 |
-
"Meta - Prompt Guard 2 86M": "meta-llama/llama-prompt-guard-2-86m",
|
617 |
-
"Mistral - Saba 24B": "mistral-saba-24b"
|
618 |
-
}
|
619 |
-
|
620 |
-
seleccion = st.selectbox(
|
621 |
-
"🧠 Elige un modelo LLM de Groq:",
|
622 |
-
list(modelos_disponibles.keys())
|
623 |
-
)
|
624 |
-
|
625 |
-
return modelos_disponibles[seleccion]
|
626 |
-
|
627 |
-
|
628 |
-
def chatBotProtech(client):
|
629 |
-
with st.sidebar.expander("📁 Chatbot"):
|
630 |
-
|
631 |
-
modelo_llm = seleccionar_modelo_llm()
|
632 |
-
|
633 |
-
# Inicializar estados
|
634 |
-
if "chat_history" not in st.session_state:
|
635 |
-
st.session_state.chat_history = []
|
636 |
-
|
637 |
-
if "audio_data" not in st.session_state:
|
638 |
-
st.session_state.audio_data = None
|
639 |
-
|
640 |
-
if "transcripcion" not in st.session_state:
|
641 |
-
st.session_state.transcripcion = ""
|
642 |
-
|
643 |
-
if "mostrar_grabador" not in st.session_state:
|
644 |
-
st.session_state.mostrar_grabador = True
|
645 |
-
|
646 |
-
# Contenedor para mensajes
|
647 |
-
messages = st.container(height=400)
|
648 |
-
|
649 |
-
# CSS: estilo tipo Messenger
|
650 |
-
st.markdown("""
|
651 |
-
<style>
|
652 |
-
.chat-message {
|
653 |
-
display: flex;
|
654 |
-
align-items: flex-start;
|
655 |
-
margin: 10px 0;
|
656 |
-
}
|
657 |
-
.chat-message.user {
|
658 |
-
justify-content: flex-end;
|
659 |
-
}
|
660 |
-
.chat-message.assistant {
|
661 |
-
justify-content: flex-start;
|
662 |
-
}
|
663 |
-
.chat-icon {
|
664 |
-
width: 30px;
|
665 |
-
height: 30px;
|
666 |
-
border-radius: 50%;
|
667 |
-
background-color: #ccc;
|
668 |
-
display: flex;
|
669 |
-
align-items: center;
|
670 |
-
justify-content: center;
|
671 |
-
font-size: 18px;
|
672 |
-
margin: 0 5px;
|
673 |
-
}
|
674 |
-
.chat-bubble {
|
675 |
-
max-width: 70%;
|
676 |
-
padding: 10px 15px;
|
677 |
-
border-radius: 15px;
|
678 |
-
font-size: 14px;
|
679 |
-
line-height: 1.5;
|
680 |
-
word-wrap: break-word;
|
681 |
-
}
|
682 |
-
.chat-bubble.user {
|
683 |
-
background-color: #DCF8C6;
|
684 |
-
color: black;
|
685 |
-
border-top-right-radius: 0;
|
686 |
-
}
|
687 |
-
.chat-bubble.assistant {
|
688 |
-
background-color: #F1F0F0;
|
689 |
-
color: black;
|
690 |
-
border-top-left-radius: 0;
|
691 |
-
}
|
692 |
-
</style>
|
693 |
-
""", unsafe_allow_html=True)
|
694 |
-
|
695 |
-
# Mostrar historial de mensajes
|
696 |
-
with messages:
|
697 |
-
st.header("🤖 ChatBot Protech")
|
698 |
-
for message in st.session_state.chat_history:
|
699 |
-
role = message["role"]
|
700 |
-
content = html.escape(message["content"]) # Escapar contenido HTML
|
701 |
-
bubble_class = "user" if role == "user" else "assistant"
|
702 |
-
icon = "👤" if role == "user" else "🤖"
|
703 |
-
|
704 |
-
# Mostrar el mensaje en una sola burbuja con ícono en el mismo bloque
|
705 |
-
st.markdown(f"""
|
706 |
-
<div class="chat-message {bubble_class}">
|
707 |
-
<div class="chat-icon">{icon}</div>
|
708 |
-
<div class="chat-bubble {bubble_class}">{content}</div>
|
709 |
-
</div>
|
710 |
-
""", unsafe_allow_html=True)
|
711 |
-
|
712 |
-
# --- Manejar transcripción como mensaje automático ---
|
713 |
-
if st.session_state.transcripcion:
|
714 |
-
prompt = st.session_state.transcripcion
|
715 |
-
st.session_state.transcripcion = ""
|
716 |
-
|
717 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
718 |
-
|
719 |
-
with messages:
|
720 |
-
st.markdown(f"""
|
721 |
-
<div class="chat-message user">
|
722 |
-
<div class="chat-bubble user">{html.escape(prompt)}</div>
|
723 |
-
<div class="chat-icon">👤</div>
|
724 |
-
</div>
|
725 |
-
""", unsafe_allow_html=True)
|
726 |
-
|
727 |
-
with messages:
|
728 |
-
with st.spinner("Pensando..."):
|
729 |
-
completion = callModelLLM(client, prompt, modelo_llm)
|
730 |
-
response = ""
|
731 |
-
response_placeholder = st.empty()
|
732 |
-
|
733 |
-
for chunk in completion:
|
734 |
-
content = chunk.choices[0].delta.content or ""
|
735 |
-
response += content
|
736 |
-
response_placeholder.markdown(f"""
|
737 |
-
<div class="chat-message assistant">
|
738 |
-
<div class="chat-icon">🤖</div>
|
739 |
-
<div class="chat-bubble assistant">{response}</div>
|
740 |
-
</div>
|
741 |
-
""", unsafe_allow_html=True)
|
742 |
-
|
743 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
744 |
-
|
745 |
-
# Captura del input tipo chat
|
746 |
-
if prompt := st.chat_input("Escribe algo..."):
|
747 |
-
st.session_state.chat_history.append({"role": "user", "content": prompt})
|
748 |
-
|
749 |
-
# Mostrar mensaje del usuario escapado
|
750 |
-
with messages:
|
751 |
-
|
752 |
-
st.markdown(f"""
|
753 |
-
<div class="chat-message user">
|
754 |
-
<div class="chat-bubble user">{prompt}</div>
|
755 |
-
<div class="chat-icon">👤</div>
|
756 |
-
</div>
|
757 |
-
""", unsafe_allow_html=True)
|
758 |
-
|
759 |
-
# Mostrar respuesta del asistente
|
760 |
-
with messages:
|
761 |
-
with st.spinner("Pensando..."):
|
762 |
-
completion = callModelLLM(client, prompt, modelo_llm)
|
763 |
-
response = ""
|
764 |
-
response_placeholder = st.empty()
|
765 |
-
|
766 |
-
for chunk in completion:
|
767 |
-
content = chunk.choices[0].delta.content or ""
|
768 |
-
response += content
|
769 |
-
|
770 |
-
response_placeholder.markdown(f"""
|
771 |
-
<div class="chat-message assistant">
|
772 |
-
<div class="chat-icon">🤖</div>
|
773 |
-
<div class="chat-bubble assistant">{response}</div>
|
774 |
-
</div>
|
775 |
-
""", unsafe_allow_html=True)
|
776 |
-
|
777 |
-
st.session_state.chat_history.append({"role": "assistant", "content": response})
|
778 |
-
|
779 |
-
# Grabación de audio (solo si está habilitada)
|
780 |
-
if st.session_state.mostrar_grabador and st.session_state.audio_data is None:
|
781 |
-
audio_data = st.audio_input("Graba tu voz aquí 🎤")
|
782 |
-
if audio_data:
|
783 |
-
st.session_state.audio_data = audio_data
|
784 |
-
st.session_state.mostrar_grabador = False # Ocultar input después de grabar
|
785 |
-
st.rerun() # Forzar recarga para ocultar input y evitar que reaparezca el audio cargado
|
786 |
-
|
787 |
-
# Mostrar controles solo si hay audio cargado
|
788 |
-
if st.session_state.audio_data:
|
789 |
-
st.audio(st.session_state.audio_data, format="audio/wav")
|
790 |
-
col1, col2 = st.columns(2)
|
791 |
-
|
792 |
-
with col1:
|
793 |
-
if st.button("✅ Aceptar grabación"):
|
794 |
-
with st.spinner("Convirtiendo y transcribiendo..."):
|
795 |
-
m4a_path = converter_bytes_m4a(st.session_state.audio_data)
|
796 |
-
|
797 |
-
with open(m4a_path, "rb") as f:
|
798 |
-
texto = callWhisper(client, m4a_path, f)
|
799 |
-
|
800 |
-
os.remove(m4a_path)
|
801 |
-
|
802 |
-
st.session_state.transcripcion = texto
|
803 |
-
st.session_state.audio_data = None
|
804 |
-
st.session_state.mostrar_grabador = True
|
805 |
-
st.rerun()
|
806 |
-
|
807 |
-
with col2:
|
808 |
-
if st.button("❌ Descartar grabación"):
|
809 |
-
st.session_state.audio_data = None
|
810 |
-
st.session_state.transcripcion = ""
|
811 |
-
st.session_state.mostrar_grabador = True
|
812 |
-
st.rerun()
|
813 |
-
|
814 |
-
|
815 |
-
def callModelLLM(client, prompt, idModel):
|
816 |
-
completion = client.chat.completions.create(
|
817 |
-
model=idModel,
|
818 |
-
messages=[
|
819 |
-
{
|
820 |
-
"role": "system",
|
821 |
-
"content": (
|
822 |
-
"Tu nombre es Protech, el asistente virtual de PRO TECHNOLOGY SOLUTIONS S.A.C. "
|
823 |
-
"Saluda al usuario con cordialidad y responde en español de forma clara, profesional y amable. "
|
824 |
-
"Debes responder como un asistente humano capacitado en atención al cliente. "
|
825 |
-
"Comienza con un saludo y pregunta: '¿En qué puedo ayudarte hoy?'."
|
826 |
-
)
|
827 |
-
},
|
828 |
-
{"role": "user", "content": prompt}
|
829 |
-
],
|
830 |
-
temperature=0.6,
|
831 |
-
max_tokens=4096,
|
832 |
-
top_p=1,
|
833 |
-
stream=True,
|
834 |
-
)
|
835 |
-
return completion
|
836 |
-
|
837 |
-
def callWhisper(client, filename_audio,file):
|
838 |
-
transcription = client.audio.transcriptions.create(
|
839 |
-
file=(filename_audio, file.read()),
|
840 |
-
model="whisper-large-v3",
|
841 |
-
response_format="verbose_json",
|
842 |
-
)
|
843 |
-
return transcription.text
|
844 |
-
|
845 |
-
def converter_bytes_m4a(audio_bytes: BytesIO) -> str:
|
846 |
-
"""
|
847 |
-
Convierte un audio en bytes (WAV, etc.) a un archivo M4A temporal.
|
848 |
-
Retorna la ruta del archivo .m4a temporal.
|
849 |
-
"""
|
850 |
-
# Asegurarse de que el cursor del stream esté al inicio
|
851 |
-
audio_bytes.seek(0)
|
852 |
-
|
853 |
-
# Leer el audio desde BytesIO usando pydub
|
854 |
-
audio = AudioSegment.from_file(audio_bytes)
|
855 |
-
|
856 |
-
# Crear archivo temporal para guardar como .m4a
|
857 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".m4a")
|
858 |
-
m4a_path = temp_file.name
|
859 |
-
temp_file.close() # Cerramos para que pydub pueda escribirlo
|
860 |
-
|
861 |
-
# Exportar a M4A usando formato compatible con ffmpeg
|
862 |
-
audio.export(m4a_path, format="ipod") # 'ipod' genera .m4a
|
863 |
-
|
864 |
-
return m4a_path
|
865 |
-
|
866 |
-
# ===========================
|
867 |
-
# Función para obtener el número de periodos basado en el filtro
|
868 |
-
# ===========================
|
869 |
-
def obtener_periodos(filtro):
|
870 |
-
opciones_periodos = {
|
871 |
-
'5 años': 60,
|
872 |
-
'3 años': 36,
|
873 |
-
'1 año': 12,
|
874 |
-
'5 meses': 5
|
875 |
-
}
|
876 |
-
return opciones_periodos.get(filtro, 12)
|
877 |
-
|
878 |
-
|
879 |
-
# ===========================
|
880 |
-
# Función para generar predicciones
|
881 |
-
# ===========================
|
882 |
-
def generar_predicciones(modelo, df, periodos):
|
883 |
-
ventas = df['Sale']
|
884 |
-
predicciones = modelo.forecast(steps=periodos)
|
885 |
-
return predicciones
|
886 |
-
|
887 |
-
# Función para mejorar el diseño de las gráficas
|
888 |
-
def mejorar_diseno_grafica(fig, meses_relevantes, nombres_meses_relevantes):
|
889 |
-
fig.update_layout(
|
890 |
-
title={
|
891 |
-
'text': "Ventas vs Mes",
|
892 |
-
|
893 |
-
'x': 0.5, # Centrado horizontal
|
894 |
-
'xanchor': 'center', # Asegura el anclaje central
|
895 |
-
'yanchor': 'top' # Anclaje superior (opcional)
|
896 |
-
},
|
897 |
-
title_font=dict(size=18, family="Arial, sans-serif", color='black'),
|
898 |
-
xaxis=dict(
|
899 |
-
title='Mes-Año',
|
900 |
-
title_font=dict(size=14, family="Arial, sans-serif", color='black'),
|
901 |
-
tickangle=-45, # Rotar las etiquetas
|
902 |
-
showgrid=True,
|
903 |
-
gridwidth=0.5,
|
904 |
-
gridcolor='lightgrey',
|
905 |
-
showline=True,
|
906 |
-
linecolor='black',
|
907 |
-
linewidth=2,
|
908 |
-
tickmode='array', # Controla qué etiquetas mostrar
|
909 |
-
tickvals=meses_relevantes, # Selecciona solo los meses relevantes
|
910 |
-
ticktext=nombres_meses_relevantes, # Meses seleccionados
|
911 |
-
tickfont=dict(size=10), # Reducir el tamaño de la fuente de las etiquetas
|
912 |
-
),
|
913 |
-
yaxis=dict(
|
914 |
-
title='Ventas',
|
915 |
-
title_font=dict(size=14, family="Arial, sans-serif", color='black'),
|
916 |
-
showgrid=True,
|
917 |
-
gridwidth=0.5,
|
918 |
-
gridcolor='lightgrey',
|
919 |
-
showline=True,
|
920 |
-
linecolor='black',
|
921 |
-
linewidth=2
|
922 |
-
),
|
923 |
-
plot_bgcolor='white', # Fondo blanco
|
924 |
-
paper_bgcolor='white', # Fondo del lienzo de la gráfica
|
925 |
-
font=dict(family="Arial, sans-serif", size=12, color="black"),
|
926 |
-
showlegend=False, # Desactivar la leyenda si no es necesaria
|
927 |
-
margin=dict(l=50, r=50, t=50, b=50) # Márgenes ajustados
|
928 |
-
)
|
929 |
-
|
930 |
-
|
931 |
-
|
932 |
-
return fig
|
933 |
-
|
934 |
-
# ===========================
|
935 |
-
# Función para cerrar sesión
|
936 |
-
# ===========================
|
937 |
-
def cerrar_sesion():
|
938 |
-
st.session_state.logged_in = False
|
939 |
-
st.session_state.usuario = None
|
940 |
-
st.session_state.pagina_actual = "login"
|
941 |
-
st.session_state.archivo_subido = False # Limpiar el archivo subido al cerrar sesión
|
942 |
-
st.session_state.df_subido = None # Limpiar datos del archivo
|
943 |
-
# Eliminar parámetros de la URL usando st.query_params
|
944 |
-
st.query_params.clear() # Método correcto para limpiar parámetros de consulta
|
945 |
-
|
946 |
-
# Redirigir a la página de login
|
947 |
-
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
paginas/demo.py
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
from base64 import b64encode
|
2 |
-
from fpdf import FPDF
|
3 |
-
import streamlit as st
|
4 |
-
|
5 |
-
st.title("Demo of fpdf2 usage with streamlit")
|
6 |
-
|
7 |
-
@st.cache_data
|
8 |
-
def gen_pdf():
|
9 |
-
pdf = FPDF()
|
10 |
-
pdf.add_page()
|
11 |
-
pdf.set_font("Helvetica", size=24)
|
12 |
-
pdf.cell(w=40,h=10,border=1,txt="hello world")
|
13 |
-
return pdf.output(dest='S').encode('latin1')
|
14 |
-
|
15 |
-
|
16 |
-
# Embed PDF to display it:
|
17 |
-
base64_pdf = b64encode(gen_pdf()).decode("utf-8")
|
18 |
-
pdf_display = f'<embed src="data:application/pdf;base64,{base64_pdf}" width="700" height="400" type="application/pdf">'
|
19 |
-
st.markdown(pdf_display, unsafe_allow_html=True)
|
20 |
-
|
21 |
-
# Add a download button:
|
22 |
-
st.download_button(
|
23 |
-
label="Download PDF",
|
24 |
-
data=gen_pdf(),
|
25 |
-
file_name="file_name.pdf",
|
26 |
-
mime="application/pdf",
|
27 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
paginas/demokaleido.py
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
import plotly.express as px
|
2 |
-
|
3 |
-
fig = px.line(x=[1, 2, 3], y=[4, 5, 6])
|
4 |
-
fig.write_image("test_fig.png", width=900, height=500)
|
5 |
-
print("✅ Imagen guardada correctamente")
|
|
|
|
|
|
|
|
|
|
|
|
paginas/images/Logo dashboard.png
DELETED
Git LFS Details
|
paginas/images/Logo general.png
DELETED
Binary file (1.93 kB)
|
|
paginas/images/Logo.png
DELETED
Binary file (1.8 kB)
|
|
paginas/login.py
DELETED
@@ -1,59 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import json
|
4 |
-
from streamlit_lottie import st_lottie
|
5 |
-
import os
|
6 |
-
import time
|
7 |
-
from .userManagement import verifyCredentials
|
8 |
-
|
9 |
-
def validateCredentials(usuario, contrasena):
|
10 |
-
return verifyCredentials(usuario, contrasena)
|
11 |
-
|
12 |
-
def load_lottiefile(filepath: str):
|
13 |
-
with open(filepath, "r") as f:
|
14 |
-
return json.load(f)
|
15 |
-
|
16 |
-
|
17 |
-
def showLogin():
|
18 |
-
|
19 |
-
c1, c2 = st.columns([60, 40])
|
20 |
-
|
21 |
-
with c1:
|
22 |
-
# Ajusta la ruta al archivo JSON de animación
|
23 |
-
ruta_animacion_laptop = os.path.join("animations", "laptopUser.json")
|
24 |
-
lottie_coding = load_lottiefile(ruta_animacion_laptop)
|
25 |
-
st_lottie(
|
26 |
-
lottie_coding,
|
27 |
-
speed=1,
|
28 |
-
reverse=False,
|
29 |
-
loop=True,
|
30 |
-
quality="low",
|
31 |
-
height=None,
|
32 |
-
width=None,
|
33 |
-
key=None,
|
34 |
-
)
|
35 |
-
|
36 |
-
with c2:
|
37 |
-
st.title("🔐 Inicio de :blue[Sesión] :sunglasses:")
|
38 |
-
|
39 |
-
# Formulario de inicio de sesión
|
40 |
-
with st.form("login_form"):
|
41 |
-
usuario = st.text_input("Usuario 👇")
|
42 |
-
contrasena = st.text_input("Contraseña 👇", type="password")
|
43 |
-
boton_login = st.form_submit_button("Iniciar Sesión", type="primary",use_container_width=True)
|
44 |
-
|
45 |
-
# Validación de credenciales
|
46 |
-
if boton_login:
|
47 |
-
if validateCredentials(usuario, contrasena):
|
48 |
-
st.session_state.logged_in = True
|
49 |
-
st.session_state.usuario = usuario
|
50 |
-
aviso = st.success("Inicio de sesión exitoso. Redirigiendo al dashboard...")
|
51 |
-
time.sleep(3)
|
52 |
-
aviso.empty()
|
53 |
-
# Simular redirección recargando el flujo principal
|
54 |
-
st.session_state.pagina_actual = "dashboard"
|
55 |
-
st.rerun()
|
56 |
-
else:
|
57 |
-
aviso = st.error("Usuario o contraseña incorrectos")
|
58 |
-
time.sleep(3)
|
59 |
-
aviso.empty()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
paginas/userManagement.py
DELETED
@@ -1,32 +0,0 @@
|
|
1 |
-
import MySQLdb
|
2 |
-
from .conexionMysql import get_db_connection
|
3 |
-
|
4 |
-
def verifyCredentials(username: str, password: str) -> bool:
|
5 |
-
"""
|
6 |
-
Verifica si las credenciales del usuario son válidas.
|
7 |
-
Retorna True si el usuario existe y la contraseña es correcta.
|
8 |
-
"""
|
9 |
-
try:
|
10 |
-
with get_db_connection() as conn:
|
11 |
-
cursor = conn.cursor()
|
12 |
-
query = "SELECT COUNT(*) FROM usuarios WHERE username = %s AND password = %s"
|
13 |
-
cursor.execute(query, (username, password))
|
14 |
-
resultado = cursor.fetchone()
|
15 |
-
return resultado[0] > 0
|
16 |
-
except MySQLdb.Error as e:
|
17 |
-
print(f"Error en la verificación de credenciales: {e}")
|
18 |
-
return False
|
19 |
-
|
20 |
-
def getDataUser(correo: str) -> dict | None:
|
21 |
-
"""
|
22 |
-
Devuelve un diccionario con los datos del usuario si existe, o None si no se encuentra.
|
23 |
-
"""
|
24 |
-
try:
|
25 |
-
with get_db_connection() as conn:
|
26 |
-
cursor = conn.cursor(MySQLdb.cursors.DictCursor)
|
27 |
-
query = "SELECT nombre, apellido, correo, telefono FROM usuarios WHERE correo = %s"
|
28 |
-
cursor.execute(query, (correo,))
|
29 |
-
return cursor.fetchone()
|
30 |
-
except MySQLdb.Error as e:
|
31 |
-
print(f"Error al obtener datos del usuario: {e}")
|
32 |
-
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
randomforest.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8ec6cfc13fafd2835935508ad2778f15ee5c6c54eee26caca9299e5710ec24b6
|
3 |
-
size 26262394
|
|
|
|
|
|
|
|
regressionmodels/catboost.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:059f80be82f0f5ace74dc7ee09cd8a24502bb2e106623f43404a65c1df9abd0f
|
3 |
-
size 1115713
|
|
|
|
|
|
|
|
regressionmodels/gradientboosting.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5bb28622f5a612db81f8c5d12f56913710303da5778551e6931dd97393ebad1c
|
3 |
-
size 145876
|
|
|
|
|
|
|
|
regressionmodels/histgradientboosting.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:13dca14204a9cbdd7bb407ae68697b9d4acc5b4969119b5abd2301f8c6e674cd
|
3 |
-
size 375945
|
|
|
|
|
|
|
|
regressionmodels/lightgbm.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ae50d6dfc075ff1b930fcb207169710ab452f384a006ed4a3c61e3d2baae35f5
|
3 |
-
size 281459
|
|
|
|
|
|
|
|
regressionmodels/mlpregressor.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:287880615fc3e4cfedbba56d537bb7217ea86808ed896d81fd75b43f3b596387
|
3 |
-
size 261329
|
|
|
|
|
|
|
|
regressionmodels/randomforest.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:8ec6cfc13fafd2835935508ad2778f15ee5c6c54eee26caca9299e5710ec24b6
|
3 |
-
size 26262394
|
|
|
|
|
|
|
|
regressionmodels/xgboost.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:31639da06ebc5667ef2fffb043e3acb0ecea1294ffa6dd1dd0df3c6ee772d36c
|
3 |
-
size 358669
|
|
|
|
|
|
|
|
requirements.txt
DELETED
Binary file (5 kB)
|
|
xgboost.pkl
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:31639da06ebc5667ef2fffb043e3acb0ecea1294ffa6dd1dd0df3c6ee772d36c
|
3 |
-
size 358669
|
|
|
|
|
|
|
|