File size: 2,006 Bytes
a5723a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import gradio as gr
import torch
from diffusers import DiffusionPipeline
import gc

def diffusion_tab(model_cache, unload_all_models):
    def load_diffusion_model():
        unload_all_models()
        model_id = "LPX55/FLUX.1-merged_lightning_v2"
        pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
        pipe = pipe.to("cpu")
        pipe.enable_attention_slicing()
        model_cache["diffusion"] = pipe
        return "Diffusion model loaded!"

    def unload_diffusion_model():
        if "diffusion" in model_cache:
            del model_cache["diffusion"]
        gc.collect()
        if torch.cuda.is_available():
            torch.cuda.empty_cache()
        return "Diffusion model unloaded!"

    def run_diffusion(prompt, width, height, steps):
        if "diffusion" not in model_cache:
            return None, "Diffusion model not loaded!"
        pipe = model_cache["diffusion"]
        image = pipe(
            prompt=prompt,
            width=width,
            height=height,
            num_inference_steps=steps,
        ).images[0]
        return image, "Success!"

    with gr.Tab("Diffusion"):
        status = gr.Markdown("Model not loaded.")
        load_btn = gr.Button("Load Diffusion Model")
        unload_btn = gr.Button("Unload Model")
        prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
        width = gr.Slider(256, 1536, value=768, step=64, label="Width")
        height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
        steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
        run_btn = gr.Button("Generate Image")
        output_img = gr.Image(label="Output Image")
        output_msg = gr.Textbox(label="Status", interactive=False)
        load_btn.click(load_diffusion_model, None, status)
        unload_btn.click(unload_diffusion_model, None, status)
        run_btn.click(run_diffusion, [prompt, width, height, steps], [output_img, output_msg])