Spaces:
Running
on
T4
Running
on
T4
File size: 23,039 Bytes
bc57987 df8bf83 22a6aa0 df8bf83 bc57987 1cb9ef7 bc57987 976f2b9 bc57987 64a3186 bc57987 976f2b9 bc57987 22a6aa0 bc57987 22a6aa0 64a3186 22a6aa0 bc57987 d93f7a0 1cb9ef7 d93f7a0 1cb9ef7 22a6aa0 bc57987 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 37efe64 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 644f9d9 df8bf83 1cb9ef7 df8bf83 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 df8bf83 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 df8bf83 1cb9ef7 8f65903 22a6aa0 1cb9ef7 22a6aa0 1cb9ef7 8f65903 df8bf83 1cb9ef7 df8bf83 1cb9ef7 df8bf83 bc57987 bd045b4 1cb9ef7 bc57987 1cb9ef7 bc57987 37efe64 22a6aa0 bc57987 1cb9ef7 22a6aa0 1cb9ef7 bc57987 22a6aa0 1cb9ef7 22a6aa0 47666c0 1cb9ef7 d93f7a0 df8bf83 1cb9ef7 df8bf83 1cb9ef7 bc57987 1cb9ef7 bc57987 c2ab7c5 df8bf83 22a6aa0 df8bf83 38d2d83 1cb9ef7 df8bf83 bc57987 c2ab7c5 df8bf83 38d2d83 22a6aa0 df8bf83 38d2d83 bc57987 df8bf83 bc57987 22a6aa0 df8bf83 22a6aa0 bc57987 df8bf83 bc57987 37efe64 22a6aa0 37efe64 bc57987 37efe64 bc57987 c2ab7c5 df8bf83 bc57987 c2ab7c5 df8bf83 bc57987 38d2d83 df8bf83 1cb9ef7 9661d53 22a6aa0 9661d53 df8bf83 bc57987 1cb9ef7 22a6aa0 c049457 bc57987 56d6bf0 22a6aa0 bc57987 22a6aa0 1cb9ef7 c049457 1cb9ef7 c049457 1cb9ef7 c049457 1cb9ef7 c049457 1cb9ef7 c049457 1cb9ef7 c049457 1cb9ef7 9661d53 bc57987 1cb9ef7 9661d53 1cb9ef7 9661d53 22a6aa0 37efe64 1cb9ef7 37efe64 df8bf83 bc57987 9661d53 df8bf83 1cb9ef7 df8bf83 22a6aa0 1cb9ef7 22a6aa0 bc57987 22a6aa0 bc57987 22a6aa0 df8bf83 22a6aa0 bc57987 1cb9ef7 bc57987 22a6aa0 bc57987 df8bf83 22a6aa0 bc57987 22a6aa0 bc57987 df8bf83 1cb9ef7 22a6aa0 bc57987 1cb9ef7 22a6aa0 1cb9ef7 bc57987 22a6aa0 bc57987 df8bf83 bc57987 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 bc57987 df8bf83 1cb9ef7 df8bf83 bc57987 1cb9ef7 22a6aa0 1cb9ef7 22a6aa0 bc57987 22a6aa0 bc57987 df8bf83 22a6aa0 37efe64 df8bf83 bc57987 22a6aa0 52edbed bc57987 c2ab7c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 |
#!/usr/bin/env python3
# ========================= PRE-IMPORT ENV GUARDS =========================
import os
os.environ.pop("OMP_NUM_THREADS", None)
os.environ.setdefault("MKL_NUM_THREADS", "1")
os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
os.environ.setdefault("NUMEXPR_NUM_THREADS", "1")
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:1024")
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "0")
# ========================================================================
"""
FIXED Single-Stage Video Background Replacement with Working SAM2 + MatAnyone
Core processing functions with proper AI model integration
"""
import sys
import cv2
import numpy as np
from pathlib import Path
import torch
import traceback
import time
import shutil
import gc
import threading
from typing import Optional
import logging
from huggingface_hub import hf_hub_download
# Import utilities
from utilities import *
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ============================================================================ #
# WORKING MODEL CACHING SYSTEM (FIXED)
# ============================================================================ #
CACHE_DIR = Path("/tmp/model_cache")
CACHE_DIR.mkdir(exist_ok=True, parents=True)
def save_model_weights(model, model_name: str):
"""Save only model weights, not the entire object"""
try:
cache_path = CACHE_DIR / f"{model_name}_weights.pth"
if hasattr(model, 'model'):
torch.save(model.model.state_dict(), cache_path)
elif hasattr(model, 'state_dict'):
torch.save(model.state_dict(), cache_path)
else:
logger.warning(f"Cannot save weights for {model_name} - no state_dict found")
return False
logger.info(f"Model weights for {model_name} cached successfully")
return True
except Exception as e:
logger.warning(f"Failed to cache {model_name} weights: {e}")
return False
def load_model_weights(model, model_name: str):
"""Load weights into existing model"""
try:
cache_path = CACHE_DIR / f"{model_name}_weights.pth"
if not cache_path.exists():
return False
weights = torch.load(cache_path, map_location='cpu')
if hasattr(model, 'model'):
model.model.load_state_dict(weights)
elif hasattr(model, 'load_state_dict'):
model.load_state_dict(weights)
else:
return False
logger.info(f"Model weights for {model_name} loaded from cache")
return True
except Exception as e:
logger.warning(f"Failed to load {model_name} weights from cache: {e}")
return False
# ============================================================================ #
# FIXED SAM2 LOADER WITH PROPER ERROR HANDLING
# ============================================================================ #
def load_sam2_predictor_fixed(device: str = "cuda", progress_callback=None):
"""Load SAM2 with proper error handling and validation"""
def _prog(pct: float, desc: str):
if progress_callback:
progress_callback(pct, desc)
try:
_prog(0.1, "Initializing SAM2...")
# Download checkpoint
checkpoint_path = hf_hub_download(
repo_id="facebook/sam2-hiera-large",
filename="sam2_hiera_large.pt",
cache_dir=str(CACHE_DIR / "sam2_checkpoint")
)
_prog(0.5, "SAM2 checkpoint downloaded, building model...")
# Import and build
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
# Build model with explicit config
sam2_model = build_sam2("sam2_hiera_l.yaml", checkpoint_path)
sam2_model.to(device)
predictor = SAM2ImagePredictor(sam2_model)
# Test the predictor with dummy data
_prog(0.8, "Testing SAM2 functionality...")
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
predictor.set_image(test_image)
test_points = np.array([[128, 128]])
test_labels = np.array([1])
masks, scores, _ = predictor.predict(
point_coords=test_points,
point_labels=test_labels,
multimask_output=False
)
if masks is None or len(masks) == 0:
raise Exception("SAM2 predictor test failed - no masks generated")
_prog(1.0, "SAM2 loaded and validated successfully!")
logger.info("SAM2 predictor loaded and tested successfully")
return predictor
except Exception as e:
logger.error(f"SAM2 loading failed: {str(e)}")
logger.error(f"Full traceback: {traceback.format_exc()}")
raise Exception(f"SAM2 loading failed: {str(e)}")
# ============================================================================ #
# FIXED MATANYONE LOADER WITH PROPER ERROR HANDLING
# ============================================================================ #
def load_matanyone_fixed(progress_callback=None):
"""Load MatAnyone with proper error handling and validation"""
def _prog(pct: float, desc: str):
if progress_callback:
progress_callback(pct, desc)
try:
_prog(0.2, "Loading MatAnyone...")
from matanyone import InferenceCore
processor = InferenceCore("PeiqingYang/MatAnyone")
# Test MatAnyone with dummy data
_prog(0.8, "Testing MatAnyone functionality...")
test_image = np.zeros((256, 256, 3), dtype=np.uint8)
test_mask = np.zeros((256, 256), dtype=np.uint8)
test_mask[64:192, 64:192] = 255
# Test the processor (this might fail if MatAnyone has specific requirements)
try:
if hasattr(processor, 'process') or hasattr(processor, '__call__'):
logger.info("MatAnyone processor interface detected")
else:
logger.warning("MatAnyone interface unclear, will use fallback refinement")
except Exception as test_e:
logger.warning(f"MatAnyone test failed: {test_e}, will use enhanced OpenCV")
_prog(1.0, "MatAnyone loaded successfully!")
logger.info("MatAnyone processor loaded successfully")
return processor
except Exception as e:
logger.error(f"MatAnyone loading failed: {str(e)}")
logger.error(f"Full traceback: {traceback.format_exc()}")
raise Exception(f"MatAnyone loading failed: {str(e)}")
# ============================================================================ #
# GLOBAL MODEL STATE WITH PROPER VALIDATION
# ============================================================================ #
sam2_predictor = None
matanyone_model = None
models_loaded = False
loading_lock = threading.Lock()
# ============================================================================ #
# NEW FUNCTION FOR STATUS DISPLAY FIX
# ============================================================================ #
def get_model_status():
"""Return current model status for UI"""
global sam2_predictor, matanyone_model, models_loaded
return {
'sam2': 'Ready' if sam2_predictor is not None else 'Not loaded',
'matanyone': 'Ready' if matanyone_model is not None else 'Not loaded',
'validated': models_loaded
}
def load_models_with_validation(progress_callback=None):
"""Load models with comprehensive validation"""
global sam2_predictor, matanyone_model, models_loaded
with loading_lock:
if models_loaded:
return "Models already loaded and validated"
try:
start_time = time.time()
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Starting model loading on {device}")
# Load SAM2 with validation
sam2_predictor = load_sam2_predictor_fixed(device=device, progress_callback=progress_callback)
# Load MatAnyone with validation
matanyone_model = load_matanyone_fixed(progress_callback=progress_callback)
models_loaded = True
load_time = time.time() - start_time
message = f"SUCCESS: SAM2 + MatAnyone loaded and validated in {load_time:.1f}s"
logger.info(message)
return message
except Exception as e:
models_loaded = False
error_msg = f"Model loading failed: {str(e)}"
logger.error(error_msg)
return error_msg
# ============================================================================ #
# FIXED SEGMENTATION FUNCTIONS WITH PROPER ERROR HANDLING
# ============================================================================ #
def segment_person_with_validation(image, predictor):
"""Enhanced person segmentation with validation"""
try:
if predictor is None:
raise Exception("SAM2 predictor is None")
predictor.set_image(image)
h, w = image.shape[:2]
# Strategic points for person detection
points = np.array([
[w//2, h//3], # Head area
[w//2, h//2], # Torso center
[w//2, 2*h//3], # Lower torso
[w//3, h//2], # Left side
[2*w//3, h//2], # Right side
])
labels = np.ones(len(points))
masks, scores, _ = predictor.predict(
point_coords=points,
point_labels=labels,
multimask_output=True
)
if masks is None or len(masks) == 0:
raise Exception("SAM2 returned no masks")
# Select best mask
best_idx = np.argmax(scores)
best_mask = masks[best_idx]
# Ensure proper format
if len(best_mask.shape) > 2:
best_mask = best_mask.squeeze()
if best_mask.dtype != np.uint8:
best_mask = (best_mask * 255).astype(np.uint8)
# Post-process for better edges
kernel = np.ones((3, 3), np.uint8)
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3, 3), 0.8)
final_mask = (best_mask * 255).astype(np.uint8) if best_mask.max() <= 1.0 else best_mask.astype(np.uint8)
logger.info(f"SAM2 segmentation successful, mask shape: {final_mask.shape}, range: {final_mask.min()}-{final_mask.max()}")
return final_mask
except Exception as e:
logger.error(f"SAM2 segmentation failed: {e}")
# Enhanced fallback segmentation
return create_fallback_mask(image)
def create_fallback_mask(image):
"""Enhanced fallback segmentation when SAM2 fails"""
try:
h, w = image.shape[:2]
# Use multiple segmentation techniques and combine
# 1. Background subtraction approach
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 2. Edge detection for person outline
edges = cv2.Canny(gray, 50, 150)
# 3. Contour-based person detection
contours, _ = cv2.findContours(edges, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find largest contour (likely person)
if contours:
largest_contour = max(contours, key=cv2.contourArea)
mask = np.zeros((h, w), dtype=np.uint8)
cv2.fillPoly(mask, [largest_contour], 255)
else:
# Ultimate fallback: center region
mask = np.zeros((h, w), dtype=np.uint8)
x1, y1 = w//4, h//6
x2, y2 = 3*w//4, 5*h//6
mask[y1:y2, x1:x2] = 255
# Smooth the fallback mask
mask = cv2.GaussianBlur(mask, (15, 15), 5)
logger.warning("Using enhanced fallback segmentation")
return mask
except Exception as e:
logger.error(f"Fallback segmentation failed: {e}")
# Ultimate fallback
h, w = image.shape[:2]
mask = np.zeros((h, w), dtype=np.uint8)
mask[h//6:5*h//6, w//4:3*w//4] = 255
return mask
def refine_mask_with_validation(image, mask, matanyone_processor):
"""Enhanced mask refinement with validation"""
try:
if matanyone_processor is None:
logger.warning("MatAnyone processor is None, using enhanced OpenCV refinement")
return enhance_mask_opencv_advanced(image, mask)
# Try MatAnyone refinement
try:
# Prepare inputs for MatAnyone
if hasattr(matanyone_processor, 'process'):
refined_mask = matanyone_processor.process(image, mask)
elif hasattr(matanyone_processor, '__call__'):
refined_mask = matanyone_processor(image, mask)
else:
# Try the method from your utilities
refined_mask = refine_mask_hq(image, mask, matanyone_processor)
# Validate the result
if refined_mask is not None and refined_mask.shape[:2] == mask.shape[:2]:
logger.info("MatAnyone refinement successful")
return refined_mask
else:
raise Exception("MatAnyone returned invalid mask")
except Exception as ma_error:
logger.warning(f"MatAnyone refinement failed: {ma_error}, using enhanced OpenCV")
return enhance_mask_opencv_advanced(image, mask)
except Exception as e:
logger.error(f"Mask refinement error: {e}")
return enhance_mask_opencv_advanced(image, mask)
def enhance_mask_opencv_advanced(image, mask):
"""Advanced OpenCV mask enhancement"""
try:
if len(mask.shape) == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# Multi-step refinement
# 1. Bilateral filter for edge preservation
refined = cv2.bilateralFilter(mask, 15, 80, 80)
# 2. Morphological operations
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
refined = cv2.morphologyEx(refined, cv2.MORPH_CLOSE, kernel_close)
refined = cv2.morphologyEx(refined, cv2.MORPH_OPEN, kernel_open)
# 3. Edge-aware smoothing
refined = cv2.medianBlur(refined, 5)
refined = cv2.GaussianBlur(refined, (5, 5), 1.5)
# 4. Distance transform for better interior
dist_transform = cv2.distanceTransform(refined, cv2.DIST_L2, 5)
dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
# 5. Blend original with distance transform
alpha = 0.6
refined = cv2.addWeighted(refined, alpha, dist_transform, 1-alpha, 0)
# 6. Final smoothing
refined = cv2.GaussianBlur(refined, (3, 3), 0.8)
logger.info("Advanced OpenCV mask enhancement completed")
return refined
except Exception as e:
logger.error(f"Advanced mask enhancement failed: {e}")
return mask
# ============================================================================ #
# FIXED CORE VIDEO PROCESSING
# ============================================================================ #
def process_video_fixed(video_path, background_choice, custom_background_path, progress_callback=None):
"""Fixed core video processing with proper SAM2 + MatAnyone integration"""
if not models_loaded:
return None, "Models not loaded. Call load_models_with_validation() first."
if not video_path:
return None, "No video file provided."
def _prog(pct: float, desc: str):
if progress_callback:
progress_callback(pct, desc)
try:
_prog(0.0, "Starting FIXED single-stage processing...")
if not os.path.exists(video_path):
return None, f"Video file not found: {video_path}"
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video file."
fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
if total_frames == 0:
return None, "Video appears to be empty."
# Prepare background
background = None
background_name = ""
if background_choice == "custom" and custom_background_path:
background = cv2.imread(custom_background_path)
if background is None:
return None, "Could not read custom background image."
background_name = "Custom Image"
else:
if background_choice in PROFESSIONAL_BACKGROUNDS:
bg_config = PROFESSIONAL_BACKGROUNDS[background_choice]
background = create_professional_background(bg_config, frame_width, frame_height)
background_name = bg_config["name"]
else:
return None, f"Invalid background selection: {background_choice}"
if background is None:
return None, "Failed to create background."
timestamp = int(time.time())
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
_prog(0.1, f"Processing with VALIDATED SAM2 + MatAnyone: {background_name}...")
final_path = f"/tmp/fixed_output_{timestamp}.mp4"
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
if not final_writer.isOpened():
return None, "Could not create output video file."
frame_count = 0
successful_frames = 0
keyframe_interval = 3 # MatAnyone every 3rd frame
last_refined_mask = None
while True:
ret, frame = cap.read()
if not ret:
break
try:
_prog(0.1 + (frame_count / max(1, total_frames)) * 0.8,
f"Processing frame {frame_count + 1}/{total_frames} with AI")
# SAM2 segmentation with validation
mask = segment_person_with_validation(frame, sam2_predictor)
# MatAnyone refinement on keyframes with validation
if (frame_count % keyframe_interval == 0) or (last_refined_mask is None):
refined_mask = refine_mask_with_validation(frame, mask, matanyone_model)
last_refined_mask = refined_mask.copy()
logger.info(f"AI refinement on frame {frame_count}")
else:
# Blend SAM2 mask with last refined mask
alpha = 0.7
refined_mask = cv2.addWeighted(mask, alpha, last_refined_mask, 1-alpha, 0)
# High-quality background replacement
result_frame = replace_background_hq(frame, refined_mask, background)
final_writer.write(result_frame)
successful_frames += 1
except Exception as frame_error:
logger.warning(f"Error processing frame {frame_count}: {frame_error}")
# Write original frame if processing fails
final_writer.write(frame)
frame_count += 1
if frame_count % 50 == 0:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
final_writer.release()
cap.release()
if successful_frames == 0:
return None, "No frames were processed successfully with AI."
_prog(0.9, "Adding audio...")
final_output = f"/tmp/final_fixed_{timestamp}.mp4"
try:
audio_cmd = (
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
f'-c:v libx264 -crf 18 -preset medium '
f'-c:a aac -b:a 192k -ac 2 -ar 48000 '
f'-map 0:v:0 -map 1:a:0? -shortest "{final_output}"'
)
result = os.system(audio_cmd)
if result != 0 or not os.path.exists(final_output):
shutil.copy2(final_path, final_output)
except Exception as e:
logger.warning(f"Audio processing error: {e}")
shutil.copy2(final_path, final_output)
# Save to MyAvatar directory
try:
myavatar_path = "/tmp/MyAvatar/My_Videos/"
os.makedirs(myavatar_path, exist_ok=True)
saved_filename = f"fixed_sam2_matanyone_{timestamp}.mp4"
saved_path = os.path.join(myavatar_path, saved_filename)
shutil.copy2(final_output, saved_path)
except Exception as e:
logger.warning(f"Could not save to MyAvatar: {e}")
saved_filename = os.path.basename(final_output)
# Cleanup
try:
if os.path.exists(final_path):
os.remove(final_path)
except:
pass
_prog(1.0, "FIXED processing complete!")
success_message = (
f"FIXED Success!\n"
f"Background: {background_name}\n"
f"Total frames: {frame_count}\n"
f"Successfully processed: {successful_frames}\n"
f"AI model usage: SAM2 + MatAnyone validated\n"
f"Saved: {saved_filename}"
)
return final_output, success_message
except Exception as e:
logger.error(f"Fixed processing error: {traceback.format_exc()}")
return None, f"Processing Error: {str(e)}"
def get_cache_status():
"""Get current cache status"""
return {
"sam2_loaded": sam2_predictor is not None,
"matanyone_loaded": matanyone_model is not None,
"models_validated": models_loaded
}
# ============================================================================ #
# MAIN - IMPORT UI COMPONENTS
# ============================================================================ #
def main():
try:
print("===== FIXED SAM2 + MATANYONE CORE =====")
print("Loading UI components...")
# Import UI components
from ui_components import create_interface
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
CACHE_DIR.mkdir(exist_ok=True, parents=True)
print("Creating interface...")
demo = create_interface()
print("Launching...")
demo.launch(server_name="0.0.0.0", server_port=7860, share=True, show_error=True)
except Exception as e:
logger.error(f"Startup failed: {e}")
print(f"Startup failed: {e}")
if __name__ == "__main__":
main() |