VideoBackgroundReplacer / test_positioning.py
MogensR's picture
Create test_positioning.py
d008b27 verified
#!/usr/bin/env python3
# =============================================================================
# CHAPTER 0: INTRO & OVERVIEW
# =============================================================================
"""
Enhanced Video Background Replacement (SAM2 + MatAnyone + AI Backgrounds)
- Strict tensor shapes for MatAnyone (image: 3xHxW, first-frame prob mask: 1xHxW)
- First frame uses PROB path (no idx_mask / objects) to avoid assertion
- Memory management & cleanup
- SDXL / Playground / OpenAI backgrounds
- Gradio UI with "CHAPTER" dividers
- FIXED: Enhanced positioning with debug logging and coordinate precision
"""
# =============================================================================
# CHAPTER 1: IMPORTS & GLOBALS
# =============================================================================
import os
import sys
import gc
import cv2
import psutil
import time
import json
import base64
import random
import shutil
import logging
import traceback
import subprocess
import tempfile
import threading
from dataclasses import dataclass
from contextlib import contextmanager
from pathlib import Path
from typing import Optional, Tuple, List
import numpy as np
from PIL import Image
import gradio as gr
from moviepy.editor import VideoFileClip
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("bgx")
# Environment tuning (safe defaults)
os.environ.setdefault("CUDA_MODULE_LOADING", "LAZY")
os.environ.setdefault("TORCH_CUDNN_V8_API_ENABLED", "1")
os.environ.setdefault("PYTHONUNBUFFERED", "1")
os.environ.setdefault("MKL_NUM_THREADS", "4")
os.environ.setdefault("BFX_QUALITY", "max")
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:128,roundup_power2_divisions:16")
os.environ.setdefault("HYDRA_FULL_ERROR", "1")
os.environ["OMP_NUM_THREADS"] = "2"
# Paths
BASE_DIR = Path(__file__).resolve().parent
CHECKPOINTS = BASE_DIR / "checkpoints"
TEMP_DIR = BASE_DIR / "temp"
OUT_DIR = BASE_DIR / "outputs"
BACKGROUND_DIR = OUT_DIR / "backgrounds"
for p in (CHECKPOINTS, TEMP_DIR, OUT_DIR, BACKGROUND_DIR):
p.mkdir(parents=True, exist_ok=True)
# Torch/device
try:
import torch
TORCH_AVAILABLE = True
CUDA_AVAILABLE = torch.cuda.is_available()
DEVICE = "cuda" if CUDA_AVAILABLE else "cpu"
try:
if torch.backends.cuda.is_built():
torch.backends.cuda.matmul.allow_tf32 = True
if hasattr(torch.backends, "cudnn"):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
if CUDA_AVAILABLE:
torch.cuda.set_per_process_memory_fraction(0.8)
except Exception:
pass
except Exception:
TORCH_AVAILABLE = False
CUDA_AVAILABLE = False
DEVICE = "cpu"
# =============================================================================
# CHAPTER 2: UI CONSTANTS & UTILS
# =============================================================================
GRADIENT_PRESETS = {
"Blue Fade": ((128, 64, 0), (255, 128, 0)),
"Sunset": ((255, 128, 0), (255, 0, 128)),
"Green Field": ((64, 128, 64), (160, 255, 160)),
"Slate": ((40, 40, 48), (96, 96, 112)),
"Ocean": ((255, 140, 0), (255, 215, 0)),
"Forest": ((34, 139, 34), (144, 238, 144)),
"Sunset Pink": ((255, 182, 193), (255, 105, 180)),
"Cool Blue": ((173, 216, 230), (0, 191, 255)),
}
AI_PROMPT_SUGGESTIONS = [
"Custom (write your own)",
"modern minimalist office with soft lighting, clean desk, blurred background",
"elegant conference room with large windows and city view",
"contemporary workspace with plants and natural light",
"luxury hotel lobby with marble floors and warm ambient lighting",
"professional studio with clean white background and soft lighting",
"modern corporate meeting room with glass walls and city skyline",
"sophisticated home office with bookshelf and warm wood tones",
"sleek coworking space with industrial design elements",
"abstract geometric patterns in blue and gold, modern art style",
"soft watercolor texture with pastel colors, dreamy atmosphere",
]
def _make_vertical_gradient(width: int, height: int, c1, c2) -> np.ndarray:
width = max(1, int(width))
height = max(1, int(height))
top = np.array(c1, dtype=np.float32)
bot = np.array(c2, dtype=np.float32)
rows = np.linspace(top, bot, num=height, dtype=np.float32)
grad = np.repeat(rows[:, None, :], repeats=width, axis=1)
return np.clip(grad, 0, 255).astype(np.uint8)
def run_ffmpeg(args: list, fail_ok=False) -> bool:
cmd = ["ffmpeg", "-y", "-hide_banner", "-loglevel", "error"] + args
try:
subprocess.run(cmd, check=True, capture_output=True)
return True
except Exception as e:
if not fail_ok:
logger.error(f"ffmpeg failed: {e}")
return False
def write_video_h264(clip, path: str, fps: Optional[int] = None, crf: int = 18, preset: str = "medium"):
fps = fps or max(1, int(round(getattr(clip, "fps", None) or 24)))
clip.write_videofile(
path,
audio=False,
fps=fps,
codec="libx264",
preset=preset,
ffmpeg_params=["-crf", str(crf), "-pix_fmt", "yuv420p", "-profile:v", "high", "-movflags", "+faststart"],
logger=None,
verbose=False,
)
def download_file(url: str, dest: Path, name: str) -> bool:
if dest.exists():
logger.info(f"{name} already exists")
return True
try:
import requests
logger.info(f"Downloading {name} ...")
with requests.get(url, stream=True, timeout=300) as r:
r.raise_for_status()
with open(dest, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
return True
except Exception as e:
logger.error(f"Failed to download {name}: {e}")
if dest.exists():
try: dest.unlink()
except Exception: pass
return False
def ensure_repo(repo_name: str, git_url: str) -> Optional[Path]:
repo_path = CHECKPOINTS / f"{repo_name}_repo"
if not repo_path.exists():
try:
subprocess.run(["git", "clone", "--depth", "1", git_url, str(repo_path)],
check=True, timeout=300, capture_output=True)
logger.info(f"{repo_name} cloned")
except Exception as e:
logger.error(f"Failed to clone {repo_name}: {e}")
return None
repo_str = str(repo_path)
if repo_str not in sys.path:
sys.path.insert(0, repo_str)
return repo_path
def _reset_hydra():
try:
from hydra.core.global_hydra import GlobalHydra
if GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
except Exception:
pass
# =============================================================================
# CHAPTER 3: MEMORY MANAGER
# =============================================================================
@dataclass
class MemoryStats:
cpu_percent: float
cpu_memory_mb: float
gpu_memory_mb: float = 0.0
gpu_memory_reserved_mb: float = 0.0
temp_files_count: int = 0
temp_files_size_mb: float = 0.0
class MemoryManager:
def __init__(self):
self.temp_files: List[str] = []
self.cleanup_lock = threading.Lock()
self.torch_available = TORCH_AVAILABLE
self.cuda_available = CUDA_AVAILABLE
def get_memory_stats(self) -> MemoryStats:
process = psutil.Process()
cpu_percent = psutil.cpu_percent(interval=0.1)
cpu_memory_mb = process.memory_info().rss / (1024 * 1024)
gpu_memory_mb = 0.0
gpu_memory_reserved_mb = 0.0
if self.torch_available and self.cuda_available:
try:
import torch
gpu_memory_mb = torch.cuda.memory_allocated() / (1024 * 1024)
gpu_memory_reserved_mb = torch.cuda.memory_reserved() / (1024 * 1024)
except Exception:
pass
temp_count, temp_size_mb = 0, 0.0
for tf in self.temp_files:
if os.path.exists(tf):
temp_count += 1
try:
temp_size_mb += os.path.getsize(tf) / (1024 * 1024)
except Exception:
pass
return MemoryStats(cpu_percent, cpu_memory_mb, gpu_memory_mb, gpu_memory_reserved_mb, temp_count, temp_size_mb)
def register_temp_file(self, path: str):
with self.cleanup_lock:
if path not in self.temp_files:
self.temp_files.append(path)
def cleanup_temp_files(self):
with self.cleanup_lock:
cleaned = 0
for tf in self.temp_files[:]:
try:
if os.path.isdir(tf):
shutil.rmtree(tf, ignore_errors=True)
elif os.path.exists(tf):
os.unlink(tf)
cleaned += 1
except Exception as e:
logger.warning(f"Failed to cleanup {tf}: {e}")
finally:
try: self.temp_files.remove(tf)
except Exception: pass
if cleaned:
logger.info(f"Cleaned {cleaned} temp paths")
def aggressive_cleanup(self):
logger.info("Aggressive cleanup...")
gc.collect()
if self.torch_available and self.cuda_available:
try:
import torch
torch.cuda.empty_cache()
torch.cuda.synchronize()
except Exception:
pass
self.cleanup_temp_files()
gc.collect()
@contextmanager
def mem_context(self, name="op"):
stats = self.get_memory_stats()
logger.info(f"Start {name} | CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
try:
yield self
finally:
self.aggressive_cleanup()
stats = self.get_memory_stats()
logger.info(f"End {name} | CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
memory_manager = MemoryManager()
# =============================================================================
# CHAPTER 4: SYSTEM STATE
# =============================================================================
class SystemState:
def __init__(self):
self.torch_available = TORCH_AVAILABLE
self.cuda_available = CUDA_AVAILABLE
self.device = DEVICE
self.sam2_ready = False
self.matanyone_ready = False
self.sam2_error = None
self.matanyone_error = None
def status_text(self) -> str:
stats = memory_manager.get_memory_stats()
return (
"=== SYSTEM STATUS ===\n"
f"PyTorch: {'✅' if self.torch_available else '❌'}\n"
f"CUDA: {'✅' if self.cuda_available else '❌'}\n"
f"Device: {self.device}\n"
f"SAM2: {'✅' if self.sam2_ready else ('❌' if self.sam2_error else '⏳')}\n"
f"MatAnyone: {'✅' if self.matanyone_ready else ('❌' if self.matanyone_error else '⏳')}\n\n"
"=== MEMORY ===\n"
f"CPU: {stats.cpu_percent:.1f}% ({stats.cpu_memory_mb:.1f} MB)\n"
f"GPU: {stats.gpu_memory_mb:.1f} MB (Reserved {stats.gpu_memory_reserved_mb:.1f} MB)\n"
f"Temp: {stats.temp_files_count} files ({stats.temp_files_size_mb:.1f} MB)\n"
)
state = SystemState()
# =============================================================================
# CHAPTER 5: SAM2 HANDLER (CUDA-only)
# =============================================================================
class SAM2Handler:
def __init__(self):
self.predictor = None
self.initialized = False
def initialize(self) -> bool:
if not (TORCH_AVAILABLE and CUDA_AVAILABLE):
state.sam2_error = "SAM2 requires CUDA"
return False
with memory_manager.mem_context("SAM2 init"):
try:
_reset_hydra()
repo_path = ensure_repo("sam2", "https://github.com/facebookresearch/segment-anything-2.git")
if not repo_path:
state.sam2_error = "Clone failed"
return False
ckpt = CHECKPOINTS / "sam2.1_hiera_large.pt"
url = "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt"
if not download_file(url, ckpt, "SAM2 Large"):
state.sam2_error = "SAM2 ckpt download failed"
return False
from hydra.core.global_hydra import GlobalHydra
from hydra import initialize_config_dir
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
config_dir = (repo_path / "sam2" / "configs").as_posix()
if GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
initialize_config_dir(config_dir=config_dir, version_base=None)
model = build_sam2("sam2.1/sam2.1_hiera_l.yaml", str(ckpt), device="cuda")
self.predictor = SAM2ImagePredictor(model)
# Smoke test
test = np.zeros((64, 64, 3), dtype=np.uint8)
self.predictor.set_image(test)
masks, scores, _ = self.predictor.predict(
point_coords=np.array([[32, 32]]),
point_labels=np.ones(1, dtype=np.int64),
multimask_output=True,
)
ok = masks is not None and len(masks) > 0
self.initialized = ok
state.sam2_ready = ok
if not ok:
state.sam2_error = "SAM2 verify failed"
return ok
except Exception as e:
state.sam2_error = f"SAM2 init error: {e}"
return False
def create_mask(self, image_rgb: np.ndarray) -> Optional[np.ndarray]:
if not self.initialized:
return None
with memory_manager.mem_context("SAM2 mask"):
try:
self.predictor.set_image(image_rgb)
h, w = image_rgb.shape[:2]
strategies = [
np.array([[w // 2, h // 2]]),
np.array([[w // 2, h // 3]]),
np.array([[w // 2, h // 3], [w // 2, (2 * h) // 3]]),
]
best, best_score = None, -1.0
for pc in strategies:
masks, scores, _ = self.predictor.predict(
point_coords=pc,
point_labels=np.ones(len(pc), dtype=np.int64),
multimask_output=True,
)
if masks is not None and len(masks) > 0:
i = int(np.argmax(scores))
sc = float(scores[i])
if sc > best_score:
best_score, best = sc, masks[i]
if best is None:
return None
mask_u8 = (best * 255).astype(np.uint8)
k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_clean = cv2.morphologyEx(mask_u8, cv2.MORPH_CLOSE, k)
mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_OPEN, k)
mask_clean = cv2.GaussianBlur(mask_clean, (3, 3), 1.0)
return mask_clean
except Exception as e:
logger.error(f"SAM2 mask error: {e}")
return None
# =============================================================================
# CHAPTER 6: MATANYONE HANDLER (FIXED - Uses existing matanyone_fixed files)
# =============================================================================
class MatAnyoneHandler:
"""
FIXED MatAnyone handler using existing matanyone_fixed files
"""
def __init__(self):
self.core = None
self.initialized = False
# ----- tensor helpers -----
def _to_chw_float(self, img01: np.ndarray) -> "torch.Tensor":
"""img01: HxWx3 in [0,1] -> torch float (3,H,W) on DEVICE (no batch)."""
assert img01.ndim == 3 and img01.shape[2] == 3, f"Expected HxWx3, got {img01.shape}"
t = torch.from_numpy(img01.transpose(2, 0, 1)).contiguous().float() # (3,H,W)
return t.to(DEVICE, non_blocking=CUDA_AVAILABLE)
def _prob_hw_from_mask_u8(self, mask_u8: np.ndarray, w: int, h: int) -> "torch.Tensor":
"""mask_u8: HxW -> torch float (H,W) in [0,1] on DEVICE (no batch, no channel)."""
if mask_u8.shape[0] != h or mask_u8.shape[1] != w:
mask_u8 = cv2.resize(mask_u8, (w, h), interpolation=cv2.INTER_NEAREST)
prob = (mask_u8.astype(np.float32) / 255.0) # (H,W)
t = torch.from_numpy(prob).contiguous().float()
return t.to(DEVICE, non_blocking=CUDA_AVAILABLE)
def _prob_1hw_from_mask_u8(self, mask_u8: np.ndarray, w: int, h: int) -> "torch.Tensor":
"""Optional: 1xHxW (channel-first, still unbatched)."""
if mask_u8.shape[0] != h or mask_u8.shape[1] != w:
mask_u8 = cv2.resize(mask_u8, (w, h), interpolation=cv2.INTER_NEAREST)
prob = (mask_u8.astype(np.float32) / 255.0)[None, ...] # (1,H,W)
t = torch.from_numpy(prob).contiguous().float()
return t.to(DEVICE, non_blocking=CUDA_AVAILABLE)
def _alpha_to_u8_hw(self, alpha_like) -> np.ndarray:
"""
Accepts torch / numpy / tuple(list) outputs.
Returns uint8 HxW (0..255). Squeezes common shapes down to HxW.
"""
if isinstance(alpha_like, (list, tuple)) and len(alpha_like) > 1:
alpha_like = alpha_like[1] # (indices, probs) -> take probs
if isinstance(alpha_like, torch.Tensor):
t = alpha_like.detach()
if t.is_cuda:
t = t.cpu()
a = t.float().clamp(0, 1).numpy()
else:
a = np.asarray(alpha_like, dtype=np.float32)
a = np.clip(a, 0, 1)
a = np.squeeze(a)
if a.ndim == 3 and a.shape[0] >= 1: # (1,H,W) -> (H,W)
a = a[0]
if a.ndim != 2:
raise ValueError(f"Alpha must be HxW; got {a.shape}")
return np.clip(a * 255.0, 0, 255).astype(np.uint8)
def initialize(self) -> bool:
"""
FIXED MatAnyone initialization using existing matanyone_fixed files
"""
if not TORCH_AVAILABLE:
state.matanyone_error = "PyTorch required"
return False
with memory_manager.mem_context("MatAnyone init"):
try:
# Use existing matanyone_fixed directory
local_matanyone = BASE_DIR / "matanyone_fixed"
if not local_matanyone.exists():
state.matanyone_error = "matanyone_fixed directory not found"
return False
# Add the fixed matanyone path to Python path
matanyone_str = str(local_matanyone)
if matanyone_str not in sys.path:
sys.path.insert(0, matanyone_str)
# Import fixed modules
try:
from inference.inference_core import InferenceCore
from utils.get_default_model import get_matanyone_model
except Exception as e:
state.matanyone_error = f"Import error: {e}"
return False
# Download model checkpoint if needed
ckpt = CHECKPOINTS / "matanyone.pth"
if not ckpt.exists():
url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0/matanyone.pth"
if not download_file(url, ckpt, "MatAnyone"):
logger.warning("MatAnyone checkpoint download failed, using random weights")
# Load model using fixed interface
net = get_matanyone_model(str(ckpt), device=DEVICE)
if net is None:
state.matanyone_error = "Model creation failed"
return False
# Create inference core with fixed implementation
self.core = InferenceCore(net)
self.initialized = True
state.matanyone_ready = True
logger.info("Fixed MatAnyone initialized successfully")
return True
except Exception as e:
state.matanyone_error = f"MatAnyone init error: {e}"
logger.error(f"MatAnyone initialization failed: {e}")
return False
def _try_step_variants_seed(self,
img_chw_t: "torch.Tensor",
prob_hw_t: "torch.Tensor",
prob_1hw_t: "torch.Tensor"):
"""
Simplified step variants using fixed MatAnyone
"""
# The fixed MatAnyone handles tensor format internally
try:
return self.core.step(img_chw_t, prob_hw_t)
except Exception as e:
try:
return self.core.step(img_chw_t, prob_1hw_t)
except Exception as e2:
# Final fallback: no probability guidance
return self.core.step(img_chw_t)
def _try_step_variants_noseed(self, img_chw_t: "torch.Tensor"):
"""
Simplified noseed variants using fixed MatAnyone
"""
return self.core.step(img_chw_t)
# ----- video matting using first-frame PROB mask --------------------------
def process_video(self, input_path: str, mask_path: str, output_path: str) -> str:
"""
Produce a single-channel alpha mp4 matching input fps & size.
First frame: pass a soft seed prob (~HW) alongside the image.
Remaining frames: call step(image) only.
"""
if not self.initialized or self.core is None:
raise RuntimeError("MatAnyone not initialized")
out_dir = Path(output_path)
out_dir.mkdir(parents=True, exist_ok=True)
alpha_path = out_dir / "alpha.mp4"
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
raise RuntimeError("Could not open input video")
fps = cap.get(cv2.CAP_PROP_FPS) or 24.0
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# soft seed prob - prepare tensor versions only
seed_mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if seed_mask is None:
cap.release()
raise RuntimeError("Seed mask read failed")
prob_hw_t = self._prob_hw_from_mask_u8(seed_mask, w, h) # (H,W) torch
prob_1hw_t = self._prob_1hw_from_mask_u8(seed_mask, w, h) # (1,H,W) torch
# temp frames
tmp_dir = TEMP_DIR / f"ma_{int(time.time())}_{random.randint(1000,9999)}"
tmp_dir.mkdir(parents=True, exist_ok=True)
memory_manager.register_temp_file(str(tmp_dir))
frame_idx = 0
# --- first frame (with soft prob) ---
ok, frame_bgr = cap.read()
if not ok or frame_bgr is None:
cap.release()
raise RuntimeError("Empty first frame")
frame_rgb01 = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
img_chw_t = self._to_chw_float(frame_rgb01) # (3,H,W) torch
with torch.no_grad():
out_prob = self._try_step_variants_seed(
img_chw_t, prob_hw_t, prob_1hw_t
)
alpha_u8 = self._alpha_to_u8_hw(out_prob)
cv2.imwrite(str(tmp_dir / f"{frame_idx:06d}.png"), alpha_u8)
frame_idx += 1
# --- remaining frames (no seed) ---
while True:
ok, frame_bgr = cap.read()
if not ok or frame_bgr is None:
break
frame_rgb01 = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
img_chw_t = self._to_chw_float(frame_rgb01)
with torch.no_grad():
out_prob = self._try_step_variants_noseed(img_chw_t)
alpha_u8 = self._alpha_to_u8_hw(out_prob)
cv2.imwrite(str(tmp_dir / f"{frame_idx:06d}.png"), alpha_u8)
frame_idx += 1
cap.release()
# --- encode PNGs → alpha mp4 ---
list_file = tmp_dir / "list.txt"
with open(list_file, "w") as f:
for i in range(frame_idx):
f.write(f"file '{(tmp_dir / f'{i:06d}.png').as_posix()}'\n")
cmd = [
"ffmpeg", "-y", "-hide_banner", "-loglevel", "error",
"-f", "concat", "-safe", "0",
"-r", f"{fps:.6f}",
"-i", str(list_file),
"-vf", f"format=gray,scale={w}:{h}:flags=area",
"-pix_fmt", "yuv420p",
"-c:v", "libx264", "-preset", "medium", "-crf", "18",
str(alpha_path)
]
subprocess.run(cmd, check=True)
return str(alpha_path)
# =============================================================================
# CHAPTER 7: AI BACKGROUNDS
# =============================================================================
def _maybe_enable_xformers(pipe):
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
def _setup_memory_efficient_pipeline(pipe, require_gpu: bool):
_maybe_enable_xformers(pipe)
if not require_gpu:
try:
if hasattr(pipe, "enable_attention_slicing"):
pipe.enable_attention_slicing("auto")
if hasattr(pipe, "enable_model_cpu_offload"):
pipe.enable_model_cpu_offload()
if hasattr(pipe, "enable_sequential_cpu_offload"):
pipe.enable_sequential_cpu_offload()
except Exception:
pass
def generate_sdxl_background(width:int, height:int, prompt:str, steps:int=30, guidance:float=7.0,
seed:Optional[int]=None, require_gpu:bool=False) -> str:
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch required for SDXL")
with memory_manager.mem_context("SDXL background"):
try:
from diffusers import StableDiffusionXLPipeline
except ImportError as e:
raise RuntimeError("Install diffusers/transformers/accelerate") from e
if require_gpu and not CUDA_AVAILABLE:
raise RuntimeError("Force GPU enabled but CUDA not available")
device = "cuda" if CUDA_AVAILABLE else "cpu"
torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32
generator = torch.Generator(device=device)
if seed is None:
seed = random.randint(0, 2**31 - 1)
generator.manual_seed(int(seed))
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch_dtype,
add_watermarker=False,
).to(device)
_setup_memory_efficient_pipeline(pipe, require_gpu)
enhanced = f"{prompt}, professional studio lighting, high detail, clean composition"
img = pipe(
prompt=enhanced,
height=int(height),
width=int(width),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=generator
).images[0]
out = TEMP_DIR / f"sdxl_bg_{int(time.time())}_{seed or 0:08d}.jpg"
img.save(out, quality=95, optimize=True)
memory_manager.register_temp_file(str(out))
del pipe, img
return str(out)
def generate_playground_v25_background(width:int, height:int, prompt:str, steps:int=30, guidance:float=7.0,
seed:Optional[int]=None, require_gpu:bool=False) -> str:
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch required for Playground v2.5")
with memory_manager.mem_context("Playground v2.5 background"):
try:
from diffusers import DiffusionPipeline
except ImportError as e:
raise RuntimeError("Install diffusers/transformers/accelerate") from e
if require_gpu and not CUDA_AVAILABLE:
raise RuntimeError("Force GPU enabled but CUDA not available")
device = "cuda" if CUDA_AVAILABLE else "cpu"
torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32
generator = torch.Generator(device=device)
if seed is None:
seed = random.randint(0, 2**31 - 1)
generator.manual_seed(int(seed))
repo_id = "playgroundai/playground-v2.5-1024px-aesthetic"
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
_setup_memory_efficient_pipeline(pipe, require_gpu)
enhanced = f"{prompt}, professional quality, soft light, minimal distractions"
img = pipe(
prompt=enhanced,
height=int(height),
width=int(width),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=generator
).images[0]
out = TEMP_DIR / f"pg25_bg_{int(time.time())}_{seed or 0:08d}.jpg"
img.save(out, quality=95, optimize=True)
memory_manager.register_temp_file(str(out))
del pipe, img
return str(out)
def generate_sd15_background(width:int, height:int, prompt:str, steps:int=25, guidance:float=7.5,
seed:Optional[int]=None, require_gpu:bool=False) -> str:
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch required for SD 1.5")
with memory_manager.mem_context("SD1.5 background"):
try:
from diffusers import StableDiffusionPipeline
except ImportError as e:
raise RuntimeError("Install diffusers/transformers/accelerate") from e
if require_gpu and not CUDA_AVAILABLE:
raise RuntimeError("Force GPU enabled but CUDA not available")
device = "cuda" if CUDA_AVAILABLE else "cpu"
torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32
generator = torch.Generator(device=device)
if seed is None:
seed = random.randint(0, 2**31 - 1)
generator.manual_seed(int(seed))
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch_dtype,
safety_checker=None,
requires_safety_checker=False
).to(device)
_setup_memory_efficient_pipeline(pipe, require_gpu)
enhanced = f"{prompt}, professional background, clean composition"
img = pipe(
prompt=enhanced,
height=int(height),
width=int(width),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=generator
).images[0]
out = TEMP_DIR / f"sd15_bg_{int(time.time())}_{seed or 0:08d}.jpg"
img.save(out, quality=95, optimize=True)
memory_manager.register_temp_file(str(out))
del pipe, img
return str(out)
def generate_openai_background(width:int, height:int, prompt:str, api_key:str, model:str="gpt-image-1") -> str:
if not api_key or not isinstance(api_key, str) or len(api_key) < 10:
raise RuntimeError("Missing or invalid OpenAI API key")
with memory_manager.mem_context("OpenAI background"):
target = "1024x1024"
url = "https://api.openai.com/v1/images/generations"
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
body = {"model": model, "prompt": f"{prompt}, professional background, studio lighting, minimal distractions, high detail",
"size": target, "n": 1, "quality": "high"}
import requests
r = requests.post(url, headers=headers, data=json.dumps(body), timeout=120)
if r.status_code != 200:
raise RuntimeError(f"OpenAI API error: {r.status_code} {r.text}")
data = r.json()
b64 = data["data"][0]["b64_json"]
raw = base64.b64decode(b64)
tmp_png = TEMP_DIR / f"openai_raw_{int(time.time())}_{random.randint(1000,9999)}.png"
with open(tmp_png, "wb") as f:
f.write(raw)
img = Image.open(tmp_png).convert("RGB").resize((int(width), int(height)), Image.LANCZOS)
out = TEMP_DIR / f"openai_bg_{int(time.time())}_{random.randint(1000,9999)}.jpg"
img.save(out, quality=95, optimize=True)
try: os.unlink(tmp_png)
except Exception: pass
memory_manager.register_temp_file(str(out))
return str(out)
def generate_ai_background_router(width:int, height:int, prompt:str, model:str="SDXL",
steps:int=30, guidance:float=7.0, seed:Optional[int]=None,
openai_key:Optional[str]=None, require_gpu:bool=False) -> str:
try:
if model == "OpenAI (gpt-image-1)":
if not openai_key:
raise RuntimeError("OpenAI API key not provided")
return generate_openai_background(width, height, prompt, openai_key, model="gpt-image-1")
elif model == "Playground v2.5":
return generate_playground_v25_background(width, height, prompt, steps, guidance, seed, require_gpu)
elif model == "SDXL":
return generate_sdxl_background(width, height, prompt, steps, guidance, seed, require_gpu)
else:
return generate_sd15_background(width, height, prompt, steps, guidance, seed, require_gpu)
except Exception as e:
logger.warning(f"{model} generation failed: {e}; falling back to SD1.5/gradient")
try:
return generate_sd15_background(width, height, prompt, steps, guidance, seed, require_gpu=False)
except Exception:
grad = _make_vertical_gradient(width, height, (235, 240, 245), (210, 220, 230))
out = TEMP_DIR / f"bg_fallback_{int(time.time())}.jpg"
cv2.imwrite(str(out), grad)
memory_manager.register_temp_file(str(out))
return str(out)
# =============================================================================
# CHAPTER 8: CHUNKED PROCESSOR (optional)
# =============================================================================
class ChunkedVideoProcessor:
def __init__(self, chunk_size_frames: int = 60):
self.chunk_size = int(chunk_size_frames)
def _extract_chunk(self, video_path: str, start_frame: int, end_frame: int, fps: float) -> str:
chunk_path = str(TEMP_DIR / f"chunk_{start_frame}_{end_frame}_{random.randint(1000,9999)}.mp4")
start_time = start_frame / fps
duration = max(0.001, (end_frame - start_frame) / fps)
cmd = [
"ffmpeg", "-y", "-hide_banner", "-loglevel", "error",
"-ss", f"{start_time:.6f}", "-i", video_path,
"-t", f"{duration:.6f}",
"-vf", "scale=trunc(iw/2)*2:trunc(ih/2)*2",
"-c:v", "libx264", "-preset", "veryfast", "-crf", "20",
"-an", chunk_path
]
subprocess.run(cmd, check=True)
return chunk_path
def _merge_chunks(self, chunk_paths: List[str], fps: float, width: int, height: int) -> str:
if not chunk_paths:
raise ValueError("No chunks to merge")
if len(chunk_paths) == 1:
return chunk_paths[0]
concat_file = TEMP_DIR / f"concat_{random.randint(1000,9999)}.txt"
with open(concat_file, "w") as f:
for c in chunk_paths:
f.write(f"file '{c}'\n")
out = TEMP_DIR / f"merged_{random.randint(1000,9999)}.mp4"
cmd = ["ffmpeg", "-y", "-hide_banner", "-loglevel", "error",
"-f", "concat", "-safe", "0", "-i", str(concat_file),
"-c", "copy", str(out)]
subprocess.run(cmd, check=True)
return str(out)
def process_video_chunks(self, video_path: str, processor_func, **kwargs) -> str:
cap = cv2.VideoCapture(video_path)
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS) or 24.0
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
processed: List[str] = []
for start in range(0, total, self.chunk_size):
end = min(start + self.chunk_size, total)
with memory_manager.mem_context(f"chunk {start}-{end}"):
ch = self._extract_chunk(video_path, start, end, fps)
memory_manager.register_temp_file(ch)
out = processor_func(ch, **kwargs)
memory_manager.register_temp_file(out)
processed.append(out)
return self._merge_chunks(processed, fps, width, height)
# =============================================================================
# CHAPTER 9: MAIN PIPELINE (SAM2 → MatAnyone → Composite) - FIXED VERSION
# =============================================================================
def process_video_main(
video_path: str,
background_path: Optional[str] = None,
trim_duration: Optional[float] = None,
crf: int = 18,
preserve_audio_flag: bool = True,
placement: Optional[dict] = None,
use_chunked_processing: bool = False,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[Optional[str], str]:
messages: List[str] = []
with memory_manager.mem_context("Pipeline"):
try:
progress(0, desc="Initializing models")
sam2 = SAM2Handler()
matanyone = MatAnyoneHandler()
if not sam2.initialize():
return None, f"SAM2 init failed: {state.sam2_error}"
if not matanyone.initialize():
return None, f"MatAnyone init failed: {state.matanyone_error}"
messages.append("✅ SAM2 & MatAnyone initialized")
progress(0.1, desc="Preparing video")
input_video = video_path
# Optional trim
if trim_duration and float(trim_duration) > 0:
trimmed = TEMP_DIR / f"trimmed_{int(time.time())}_{random.randint(1000,9999)}.mp4"
memory_manager.register_temp_file(str(trimmed))
with VideoFileClip(video_path) as clip:
d = min(float(trim_duration), float(clip.duration or trim_duration))
sub = clip.subclip(0, d)
write_video_h264(sub, str(trimmed), crf=int(crf))
sub.close()
input_video = str(trimmed)
messages.append(f"✂️ Trimmed to {d:.1f}s")
else:
with VideoFileClip(video_path) as clip:
messages.append(f"🎞️ Full video: {clip.duration:.1f}s")
progress(0.2, desc="Creating SAM2 mask")
cap = cv2.VideoCapture(input_video)
ret, first_frame = cap.read()
cap.release()
if not ret or first_frame is None:
return None, "Could not read video"
h, w = first_frame.shape[:2]
rgb0 = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
mask = sam2.create_mask(rgb0)
if mask is None:
return None, "SAM2 mask failed"
mask_path = TEMP_DIR / f"mask_{int(time.time())}_{random.randint(1000,9999)}.png"
memory_manager.register_temp_file(str(mask_path))
cv2.imwrite(str(mask_path), mask)
messages.append("✅ Person mask created")
progress(0.35, desc="Matting video")
if use_chunked_processing:
chunker = ChunkedVideoProcessor(chunk_size_frames=60)
alpha_video = chunker.process_video_chunks(
input_video,
lambda chunk_path, **_k: matanyone.process_video(
input_path=chunk_path,
mask_path=str(mask_path),
output_path=str(TEMP_DIR / f"matanyone_chunk_{int(time.time())}_{random.randint(1000,9999)}")
)
)
memory_manager.register_temp_file(alpha_video)
else:
out_dir = TEMP_DIR / f"matanyone_out_{int(time.time())}_{random.randint(1000,9999)}"
out_dir.mkdir(parents=True, exist_ok=True)
memory_manager.register_temp_file(str(out_dir))
alpha_video = matanyone.process_video(
input_path=input_video,
mask_path=str(mask_path),
output_path=str(out_dir)
)
if not alpha_video or not os.path.exists(alpha_video):
return None, "MatAnyone did not produce alpha video"
messages.append("✅ Alpha video generated")
progress(0.55, desc="Preparing background")
original_clip = VideoFileClip(input_video)
alpha_clip = VideoFileClip(alpha_video)
if background_path and os.path.exists(background_path):
messages.append("🖼️ Using background file")
bg_bgr = cv2.imread(background_path)
bg_bgr = cv2.resize(bg_bgr, (w, h))
bg_rgb = cv2.cvtColor(bg_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
else:
messages.append("🖼️ Using gradient background")
grad = _make_vertical_gradient(w, h, (200, 205, 215), (160, 170, 190))
bg_rgb = cv2.cvtColor(grad, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
# FIXED: Enhanced placement parameters with validation and debugging
placement = placement or {}
px = max(0.0, min(1.0, float(placement.get("x", 0.5))))
py = max(0.0, min(1.0, float(placement.get("y", 0.75))))
ps = max(0.3, min(2.0, float(placement.get("scale", 1.0))))
feather_px = max(0, min(50, int(placement.get("feather", 3))))
# Debug logging for placement parameters
logger.info(f"POSITIONING DEBUG: px={px:.3f}, py={py:.3f}, ps={ps:.3f}, feather={feather_px}")
logger.info(f"VIDEO DIMENSIONS: {w}x{h}")
logger.info(f"TARGET CENTER: ({int(px * w)}, {int(py * h)})")
frame_count = 0
def composite_frame(get_frame, t):
nonlocal frame_count
frame_count += 1
# Get original frame
frame = get_frame(t).astype(np.float32) / 255.0
hh, ww = frame.shape[:2]
# FIXED: Better alpha temporal synchronization
alpha_duration = getattr(alpha_clip, 'duration', None)
if alpha_duration and alpha_duration > 0:
# Ensure we don't go beyond alpha video duration
alpha_t = min(t, alpha_duration - 0.01)
alpha_t = max(0.0, alpha_t)
else:
alpha_t = 0.0
try:
a = alpha_clip.get_frame(alpha_t)
# Handle multi-channel alpha
if a.ndim == 3:
a = a[:, :, 0]
a = a.astype(np.float32) / 255.0
# FIXED: Ensure alpha matches frame dimensions exactly
if a.shape != (hh, ww):
logger.warning(f"Alpha size mismatch: {a.shape} vs {(hh, ww)}, resizing...")
a = cv2.resize(a, (ww, hh), interpolation=cv2.INTER_LINEAR)
except Exception as e:
logger.error(f"Alpha frame error at t={t:.3f}: {e}")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Calculate scaled dimensions with better rounding
sw = max(1, round(ww * ps)) # Use round instead of int for better precision
sh = max(1, round(hh * ps))
# FIXED: Scale both frame and alpha consistently
try:
fg_scaled = cv2.resize(frame, (sw, sh), interpolation=cv2.INTER_AREA if ps < 1.0 else cv2.INTER_LINEAR)
a_scaled = cv2.resize(a, (sw, sh), interpolation=cv2.INTER_AREA if ps < 1.0 else cv2.INTER_LINEAR)
except Exception as e:
logger.error(f"Scaling error: {e}")
return (bg_rgb * 255).astype(np.uint8)
# Create canvases
fg_canvas = np.zeros_like(frame, dtype=np.float32)
a_canvas = np.zeros((hh, ww), dtype=np.float32)
# FIXED: More precise center calculations
cx = round(px * ww)
cy = round(py * hh)
# FIXED: Use floor division for consistent centering
x0 = cx - sw // 2
y0 = cy - sh // 2
# Debug logging for first few frames
if frame_count <= 3:
logger.info(f"FRAME {frame_count}: scaled_size=({sw}, {sh}), center=({cx}, {cy}), top_left=({x0}, {y0})")
# FIXED: Robust bounds checking with edge case handling
xs0 = max(0, x0)
ys0 = max(0, y0)
xs1 = min(ww, x0 + sw)
ys1 = min(hh, y0 + sh)
# Check for valid placement region
if xs1 <= xs0 or ys1 <= ys0:
if frame_count <= 3:
logger.warning(f"Subject outside bounds: dest=({xs0},{ys0})-({xs1},{ys1})")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Calculate source region with bounds validation
src_x0 = xs0 - x0 # Will be 0 if x0 >= 0, positive if x0 < 0
src_y0 = ys0 - y0 # Will be 0 if y0 >= 0, positive if y0 < 0
src_x1 = src_x0 + (xs1 - xs0)
src_y1 = src_y0 + (ys1 - ys0)
# Validate source bounds
if (src_x1 > sw or src_y1 > sh or src_x0 < 0 or src_y0 < 0 or
src_x1 <= src_x0 or src_y1 <= src_y0):
if frame_count <= 3:
logger.error(f"Invalid source region: ({src_x0},{src_y0})-({src_x1},{src_y1}) for {sw}x{sh} scaled")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Safe canvas placement with error handling
try:
fg_canvas[ys0:ys1, xs0:xs1, :] = fg_scaled[src_y0:src_y1, src_x0:src_x1, :]
a_canvas[ys0:ys1, xs0:xs1] = a_scaled[src_y0:src_y1, src_x0:src_x1]
except Exception as e:
logger.error(f"Canvas placement failed: {e}")
logger.error(f"Dest: [{ys0}:{ys1}, {xs0}:{xs1}], Src: [{src_y0}:{src_y1}, {src_x0}:{src_x1}]")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Apply feathering with bounds checking
if feather_px > 0:
kernel_size = max(3, feather_px * 2 + 1)
if kernel_size % 2 == 0:
kernel_size += 1 # Ensure odd kernel size
try:
a_canvas = cv2.GaussianBlur(a_canvas, (kernel_size, kernel_size), feather_px / 3.0)
except Exception as e:
logger.warning(f"Feathering failed: {e}")
# FIXED: Composite with proper alpha handling
a3 = np.expand_dims(a_canvas, axis=2) # More explicit than [:, :, None]
comp = a3 * fg_canvas + (1.0 - a3) * bg_rgb
result = np.clip(comp * 255, 0, 255).astype(np.uint8)
return result
progress(0.7, desc="Compositing")
final_clip = original_clip.fl(composite_frame)
output_path = OUT_DIR / f"processed_{int(time.time())}_{random.randint(1000,9999)}.mp4"
temp_video_path = TEMP_DIR / f"temp_video_{int(time.time())}_{random.randint(1000,9999)}.mp4"
memory_manager.register_temp_file(str(temp_video_path))
write_video_h264(final_clip, str(temp_video_path), crf=int(crf))
original_clip.close(); alpha_clip.close(); final_clip.close()
progress(0.85, desc="Merging audio")
if preserve_audio_flag:
success = run_ffmpeg([
"-i", str(temp_video_path),
"-i", video_path,
"-map", "0:v:0",
"-map", "1:a:0?",
"-c:v", "copy",
"-c:a", "aac",
"-b:a", "192k",
"-shortest",
str(output_path)
], fail_ok=True)
if success:
messages.append("🔊 Original audio preserved")
else:
shutil.copy2(str(temp_video_path), str(output_path))
messages.append("⚠️ Audio merge failed, saved w/o audio")
else:
shutil.copy2(str(temp_video_path), str(output_path))
messages.append("🔇 Saved without audio")
messages.append("✅ Done")
stats = memory_manager.get_memory_stats()
messages.append(f"📊 CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
messages.append(f"🎯 Processed {frame_count} frames with placement ({px:.2f}, {py:.2f}) @ {ps:.2f}x scale")
progress(1.0, desc="Done")
return str(output_path), "\n".join(messages)
except Exception as e:
err = f"Processing failed: {str(e)}\n\n{traceback.format_exc()}"
return None, err
# =============================================================================
# CHAPTER 10: GRADIO UI
# =============================================================================
def create_interface():
def diag():
return state.status_text()
def cleanup():
memory_manager.aggressive_cleanup()
s = memory_manager.get_memory_stats()
return f"🧹 Cleanup\nCPU: {s.cpu_memory_mb:.1f}MB\nGPU: {s.gpu_memory_mb:.1f}MB\nTemp: {s.temp_files_count} files"
def preload(ai_model, openai_key, force_gpu, progress=gr.Progress()):
try:
progress(0, desc="Preloading...")
msg = ""
if ai_model in ("SDXL", "Playground v2.5", "SD 1.5 (fallback)"):
try:
if ai_model == "SDXL":
_ = generate_sdxl_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu))
elif ai_model == "Playground v2.5":
_ = generate_playground_v25_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu))
else:
_ = generate_sd15_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu))
msg += f"{ai_model} preloaded.\n"
except Exception as e:
msg += f"{ai_model} preload failed: {e}\n"
_reset_hydra()
s, m = SAM2Handler(), MatAnyoneHandler()
ok_s = s.initialize()
_reset_hydra()
ok_m = m.initialize()
progress(1.0, desc="Preload complete")
return f"✅ Preload\n{msg}SAM2: {'ready' if ok_s else 'failed'}\nMatAnyone: {'ready' if ok_m else 'failed'}"
except Exception as e:
return f"❌ Preload error: {e}"
def generate_background_safe(video_file, ai_prompt, ai_steps, ai_guidance, ai_seed,
ai_model, openai_key, force_gpu, progress=gr.Progress()):
if not video_file:
return None, "Upload a video first", gr.update(visible=False), None
with memory_manager.mem_context("Background generation"):
try:
video_path = video_file.name if hasattr(video_file, 'name') else str(video_file)
if not os.path.exists(video_path):
return None, "Video not found", gr.update(visible=False), None
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video", gr.update(visible=False), None
ret, frame = cap.read()
cap.release()
if not ret or frame is None:
return None, "Could not read frame", gr.update(visible=False), None
h, w = int(frame.shape[0]), int(frame.shape[1])
steps = max(1, min(50, int(ai_steps or 30)))
guidance = max(1.0, min(15.0, float(ai_guidance or 7.0)))
try:
seed_val = int(ai_seed) if ai_seed and str(ai_seed).strip() else None
except Exception:
seed_val = None
progress(0.1, desc=f"Generating {ai_model}")
bg_path = generate_ai_background_router(
width=w, height=h, prompt=str(ai_prompt or "professional office background").strip(),
model=str(ai_model or "SDXL"), steps=steps, guidance=guidance,
seed=seed_val, openai_key=openai_key, require_gpu=bool(force_gpu)
)
progress(1.0, desc="Background ready")
if bg_path and os.path.exists(bg_path):
return bg_path, f"AI background generated with {ai_model}", gr.update(visible=True), bg_path
else:
return None, "No output file", gr.update(visible=False), None
except Exception as e:
logger.error(f"Background generation error: {e}")
return None, f"Background generation failed: {str(e)}", gr.update(visible=False), None
def approve_background(bg_path):
try:
if not bg_path or not (isinstance(bg_path, str) and os.path.exists(bg_path)):
return None, "Generate a background first", gr.update(visible=False)
ext = os.path.splitext(bg_path)[1].lower() or ".jpg"
safe_name = f"approved_{int(time.time())}_{random.randint(1000,9999)}{ext}"
dest = BACKGROUND_DIR / safe_name
shutil.copy2(bg_path, dest)
return str(dest), f"✅ Background approved → {dest.name}", gr.update(visible=False)
except Exception as e:
return None, f"⚠️ Approve failed: {e}", gr.update(visible=False)
css = """
.gradio-container { font-size: 16px !important; }
label { font-size: 18px !important; font-weight: 600 !important; color: #2d3748 !important; }
.process-button { font-size: 20px !important; font-weight: 700 !important; padding: 16px 28px !important; }
.memory-info { background: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 12px; }
"""
with gr.Blocks(title="Enhanced Video Background Replacement", theme=gr.themes.Soft(), css=css) as interface:
gr.Markdown("# 🎬 Enhanced Video Background Replacement")
gr.Markdown("_SAM2 + MatAnyone + AI Backgrounds — with strict tensor shapes & memory management_")
gr.HTML(f"""
<div class='memory-info'>
<strong>Device:</strong> {DEVICE} &nbsp;&nbsp;
<strong>PyTorch:</strong> {'✅' if TORCH_AVAILABLE else '❌'} &nbsp;&nbsp;
<strong>CUDA:</strong> {'✅' if CUDA_AVAILABLE else '❌'}
</div>
""")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Input Video")
gr.Markdown("### Background")
bg_method = gr.Radio(choices=["Upload Image", "Gradients", "AI Generated"],
value="AI Generated", label="Background Method")
# Upload group (hidden by default)
with gr.Group(visible=False) as upload_group:
upload_img = gr.Image(label="Background Image", type="filepath")
# Gradient group (hidden by default)
with gr.Group(visible=False) as gradient_group:
gradient_choice = gr.Dropdown(label="Gradient Style",
choices=list(GRADIENT_PRESETS.keys()),
value="Slate")
# AI group (visible by default)
with gr.Group(visible=True) as ai_group:
prompt_suggestions = gr.Dropdown(label="💡 Prompt Inspiration",
choices=AI_PROMPT_SUGGESTIONS,
value="Custom (write your own)")
ai_prompt = gr.Textbox(label="Background Description",
value="professional office background", lines=3)
ai_model = gr.Radio(["SDXL", "Playground v2.5", "SD 1.5 (fallback)", "OpenAI (gpt-image-1)"],
value="SDXL", label="AI Model")
with gr.Accordion("Connect services (optional)", open=False):
openai_api_key = gr.Textbox(label="OpenAI API Key", type="password",
placeholder="sk-... (kept only in this session)")
with gr.Row():
ai_steps = gr.Slider(10, 50, value=30, step=1, label="Quality (steps)")
ai_guidance = gr.Slider(1.0, 15.0, value=7.0, step=0.1, label="Guidance")
ai_seed = gr.Number(label="Seed (optional)", precision=0)
force_gpu_ai = gr.Checkbox(value=True, label="Force GPU for AI background")
preload_btn = gr.Button("📦 Preload Models")
preload_status = gr.Textbox(label="Preload Status", lines=4)
generate_bg_btn = gr.Button("Generate AI Background", variant="primary")
ai_generated_bg = gr.Image(label="Generated Background", type="filepath")
approve_bg_btn = gr.Button("✅ Approve Background", visible=False)
approved_background_path = gr.State(value=None)
last_generated_bg = gr.State(value=None)
ai_status = gr.Textbox(label="Generation Status", lines=2)
gr.Markdown("### Processing")
with gr.Row():
trim_enabled = gr.Checkbox(label="Trim Video", value=False)
trim_seconds = gr.Number(label="Trim Duration (seconds)", value=5, precision=1)
with gr.Row():
crf_value = gr.Slider(0, 30, value=18, step=1, label="Quality (CRF - lower=better)")
audio_enabled = gr.Checkbox(label="Preserve Audio", value=True)
with gr.Row():
use_chunked = gr.Checkbox(label="Use Chunked Processing", value=False)
gr.Markdown("### Subject Placement")
with gr.Row():
place_x = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Horizontal")
place_y = gr.Slider(0.0, 1.0, value=0.75, step=0.01, label="Vertical")
with gr.Row():
place_scale = gr.Slider(0.3, 2.0, value=1.0, step=0.01, label="Scale")
place_feather = gr.Slider(0, 15, value=3, step=1, label="Edge feather (px)")
process_btn = gr.Button("🚀 Process Video", variant="primary", elem_classes=["process-button"])
gr.Markdown("### System")
with gr.Row():
diagnostics_btn = gr.Button("📊 System Diagnostics")
cleanup_btn = gr.Button("🧹 Memory Cleanup")
diagnostics_output = gr.Textbox(label="System Status", lines=10)
with gr.Column(scale=1):
output_video = gr.Video(label="Processed Video")
download_file = gr.File(label="Download Processed Video")
status_output = gr.Textbox(label="Processing Status", lines=20)
# --- Wiring ---
def update_background_visibility(method):
return (
gr.update(visible=(method == "Upload Image")),
gr.update(visible=(method == "Gradients")),
gr.update(visible=(method == "AI Generated")),
)
def update_prompt_from_suggestion(suggestion):
if suggestion == "Custom (write your own)":
return gr.update(value="", placeholder="Describe the background you want...")
return gr.update(value=suggestion)
bg_method.change(
update_background_visibility,
inputs=[bg_method],
outputs=[upload_group, gradient_group, ai_group]
)
prompt_suggestions.change(update_prompt_from_suggestion, inputs=[prompt_suggestions], outputs=[ai_prompt])
preload_btn.click(preload,
inputs=[ai_model, openai_api_key, force_gpu_ai],
outputs=[preload_status],
show_progress=True
)
generate_bg_btn.click(
generate_background_safe,
inputs=[video_input, ai_prompt, ai_steps, ai_guidance, ai_seed, ai_model, openai_api_key, force_gpu_ai],
outputs=[ai_generated_bg, ai_status, approve_bg_btn, last_generated_bg],
show_progress=True
)
approve_bg_btn.click(
approve_background,
inputs=[ai_generated_bg],
outputs=[approved_background_path, ai_status, approve_bg_btn]
)
diagnostics_btn.click(diag, outputs=[diagnostics_output])
cleanup_btn.click(cleanup, outputs=[diagnostics_output])
def process_video(
video_file,
bg_method,
upload_img,
gradient_choice,
approved_background_path,
last_generated_bg,
trim_enabled, trim_seconds, crf_value, audio_enabled,
use_chunked,
place_x, place_y, place_scale, place_feather,
progress=gr.Progress(track_tqdm=True),
):
try:
if not video_file:
return None, None, "Please upload a video file"
video_path = video_file.name if hasattr(video_file, 'name') else str(video_file)
# Resolve background
bg_path = None
try:
if bg_method == "Upload Image" and upload_img:
bg_path = upload_img if isinstance(upload_img, str) else getattr(upload_img, "name", None)
elif bg_method == "Gradients":
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read(); cap.release()
if ret and frame is not None:
h, w = frame.shape[:2]
if gradient_choice in GRADIENT_PRESETS:
grad = _make_vertical_gradient(w, h, *GRADIENT_PRESETS[gradient_choice])
tmp_bg = tempfile.NamedTemporaryFile(suffix=".jpg", delete=False, dir=TEMP_DIR).name
cv2.imwrite(tmp_bg, grad)
memory_manager.register_temp_file(tmp_bg)
bg_path = tmp_bg
else: # AI Generated
if approved_background_path:
bg_path = approved_background_path
elif last_generated_bg and isinstance(last_generated_bg, str) and os.path.exists(last_generated_bg):
bg_path = last_generated_bg
except Exception as e:
logger.error(f"Background setup error: {e}")
return None, None, f"Background setup failed: {str(e)}"
result_path, status = process_video_main(
video_path=video_path,
background_path=bg_path,
trim_duration=float(trim_seconds) if (trim_enabled and float(trim_seconds) > 0) else None,
crf=int(crf_value),
preserve_audio_flag=bool(audio_enabled),
placement=dict(x=float(place_x), y=float(place_y), scale=float(place_scale), feather=int(place_feather)),
use_chunked_processing=bool(use_chunked),
progress=progress,
)
if result_path and os.path.exists(result_path):
return result_path, result_path, f"✅ Success\n\n{status}"
else:
return None, None, f"❌ Failed\n\n{status or 'Unknown error'}"
except Exception as e:
tb = traceback.format_exc()
return None, None, f"❌ Crash: {e}\n\n{tb}"
process_btn.click(
process_video,
inputs=[
video_input,
bg_method,
upload_img,
gradient_choice,
approved_background_path, last_generated_bg,
trim_enabled, trim_seconds, crf_value, audio_enabled,
use_chunked,
place_x, place_y, place_scale, place_feather,
],
outputs=[output_video, download_file, status_output],
show_progress=True
)
return interface
# =============================================================================
# CHAPTER 11: MAIN
# =============================================================================
def main():
logger.info("Starting Enhanced Background Replacement")
stats = memory_manager.get_memory_stats()
logger.info(f"Initial memory: CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
interface = create_interface()
interface.queue(max_size=3)
try:
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
inbrowser=False,
show_error=True
)
finally:
logger.info("Shutting down - cleanup")
memory_manager.cleanup_temp_files()
memory_manager.aggressive_cleanup()
if __name__ == "__main__":
main()