Spaces:
Sleeping
Sleeping
File size: 8,992 Bytes
7c4da79 df40eb2 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 3bb4577 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 55fd32b 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 7c4da79 8f2e1c5 ad7b470 8f2e1c5 85bf311 7ef23f3 85bf311 8f2e1c5 df40eb2 55fd32b ad7b470 55fd32b ad7b470 55fd32b ad7b470 55fd32b ad7b470 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import os
import gradio
import pandas as pd
import psycopg2
import re
import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag
from nltk.corpus import stopwords
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import unicodedata
nltk.download('punkt')
nltk.download('averaged_perceptron_tagger')
nltk.download('stopwords')
def get_paragraph(row, index):
ans = ''
for x in row[index]:
ans = ans + ' ' + x.lower()
return ans
def remove_accents(text):
text = unicodedata.normalize('NFKD', text).encode(
'ASCII', 'ignore').decode('utf-8')
return text
def get_clean_text(row, index):
if not isinstance(row[index], str):
return ''
if row[index] == "NULL":
return ''
clean_text = ''
words = word_tokenize(row[index].lower())
for word in words:
word = word.replace(',', ' ')
word = remove_accents(word)
if re.match(r'^[a-zA-Z]+$', word) and word not in stop_words and len(word) > 1 and word[1] != '.':
clean_text += ' ' + word
return clean_text
def combine(row, indices):
ans = ''
for i in indices:
ans = ans + ' ' + row[i]
return ans
stop_words = set(stopwords.words('english'))
query = "SELECT * FROM base_springerdata"
CACHE = {}
SQL_KEY = 'sql'
JOURNAL_COMPLETE = 'journal_complete'
JOURNAL_PARTIAL = 'journal_partial'
VECTORIZER = 'vectorizer'
JOURNAL_TFIDF = 'journal_tfidf'
# Access the secrets
HOST = os.getenv('DATABASE_HOST')
DATABASE = os.getenv('DATABASE_NAME')
USER = os.getenv('DATABASE_USER')
PASSWORD = os.getenv('DATABASE_PASSWORD')
# load sql
def load_sql_data(query):
if SQL_KEY in CACHE:
return CACHE[SQL_KEY]
conn = psycopg2.connect(
host=HOST,
database=DATABASE,
user=USER,
password=PASSWORD
)
df = pd.read_sql_query(query, conn)
df = df.drop(['item_doi'], axis=1)
# Close the database connection
conn.close()
CACHE[SQL_KEY] = df
return df
# main_df
main_df = load_sql_data(query)
# load journal_df
def get_journal_df(df):
if JOURNAL_PARTIAL in CACHE:
return CACHE[JOURNAL_PARTIAL]
journal_art = df.groupby('publication_title')['item_title'].apply(
list).reset_index(name='Articles')
journal_art.set_index(['publication_title'], inplace=True)
journal_auth = df.groupby('publication_title')['authors'].apply(
list).reset_index(name='authors')
journal_auth.set_index('publication_title', inplace=True)
journal_key = df.drop_duplicates(
subset=["publication_title", "keywords"], keep='first')
journal_key = journal_key.drop(
['item_title', 'authors', 'publication_year', 'url'], axis=1)
journal_key.set_index(['publication_title'], inplace=True)
journal_main = journal_art.join([journal_key, journal_auth])
print('journal_main intial')
journal_main.reset_index(inplace=True)
journal_main['Articles'] = journal_main.apply(
get_paragraph, index='Articles', axis=1)
journal_main['Articles'] = journal_main.apply(
get_clean_text, index='Articles', axis=1)
journal_main['authors'] = journal_main.apply(
get_paragraph, index='authors', axis=1)
journal_main['authors'] = journal_main.apply(
get_clean_text, index='authors', axis=1)
journal_main['keywords'] = journal_main.apply(
get_clean_text, index='keywords', axis=1)
journal_main['Tags'] = journal_main.apply(
combine, indices=['keywords', 'Articles', 'authors'], axis=1)
journal_main['Tags'] = journal_main.apply(
get_clean_text, index='Tags', axis=1)
CACHE[JOURNAL_PARTIAL] = journal_main
return journal_main
# Journal Dataframe
journal_main = get_journal_df(main_df)
print('journal_main processed')
# load tfidfs
def get_tfidfs(journal_main):
if VECTORIZER and JOURNAL_TFIDF in CACHE:
return CACHE[VECTORIZER], CACHE[JOURNAL_TFIDF]
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
journal_tfidf_matrix = vectorizer.fit_transform(journal_main['Tags'])
CACHE[VECTORIZER] = vectorizer
CACHE[JOURNAL_TFIDF] = journal_tfidf_matrix
return vectorizer, journal_tfidf_matrix
vectorizer, journal_tfidf_matrix = get_tfidfs(journal_main)
print('tfids and vectorizer for journals completed')
def get_article_df(row):
article = main_df.loc[main_df['publication_title'] ==
journal_main['publication_title'][row.name]].copy()
article['item_title'] = article.apply(
get_clean_text, index='item_title', axis=1)
article['authors'] = article.apply(get_clean_text, index='authors', axis=1)
article['Tokenized'] = article['item_title'].apply(word_tokenize)
article['Tagged'] = article['Tokenized'].apply(pos_tag)
article['Tags'] = article['Tagged'].apply(lambda x: [word for word, tag in x if
tag.startswith('NN') or tag.startswith('JJ') and word.lower() not in stop_words])
article['Tags'] = article.apply(get_paragraph, index='Tags', axis=1)
article['Tags'] = article.apply(
lambda x: x['Tags'] + ' ' + x['authors'] + ' ' + str(x['publication_year']), axis=1)
article = article.drop(['keywords', 'publication_title',
'Tokenized', 'Tagged', 'authors', 'publication_year'], axis=1)
article.reset_index(inplace=True)
article.set_index('index', inplace=True)
return article
def get_vectorizer(row):
vectorizer = TfidfVectorizer(decode_error='ignore', strip_accents='ascii')
return vectorizer
def get_tfidf_matrix(row):
tfidf_matrix = row['article_vectorizer'].fit_transform(
row['article_df']['Tags'])
return tfidf_matrix
def article_preprocessing(df):
if JOURNAL_COMPLETE in CACHE:
return CACHE[JOURNAL_COMPLETE]
df['article_df'] = df.apply(get_article_df, axis=1)
df['article_vectorizer'] = df.apply(get_vectorizer, axis=1)
df['article_matrix'] = df.apply(get_tfidf_matrix, axis=1)
CACHE[JOURNAL_COMPLETE] = df
return df
journal_main = article_preprocessing(journal_main)
print('done')
# prediction
journal_threshold = 4
def get_journal_index(user_input):
user_tfidf = vectorizer.transform([user_input])
cosine_similarities = cosine_similarity(
user_tfidf, journal_tfidf_matrix).flatten()
indices = cosine_similarities.argsort()[::-1]
top_recommendations = [i for i in indices if cosine_similarities[i] > 0][:min(
journal_threshold, len(indices))]
return top_recommendations
article_threshold = 10
def get_article_recommendations(user_input):
recommended_journals = get_journal_index(user_input)
recommendations = []
for journal_id in recommended_journals:
user_tfidf = journal_main['article_vectorizer'][journal_id].transform([
user_input])
cosine_similarities = cosine_similarity(
user_tfidf, journal_main['article_matrix'][journal_id]).flatten()
indices = cosine_similarities.argsort()[::-1]
top_recommendation_articles = [(cosine_similarities[i], i, journal_id) for i in indices if
cosine_similarities[i] > 0][:min(article_threshold, len(indices))]
recommendations += top_recommendation_articles
recommendations.sort(reverse=True)
return recommendations
def get_links(user_input):
if(validation(user_input)=="invalid"):
return "invalid"
recommendations = get_article_recommendations(user_input)
links = []
for article in recommendations:
cosine_similarity, article_id, journal_id = article
link = {
"title": journal_main['article_df'][journal_id].iloc[article_id, 0],
"url": journal_main['article_df'][journal_id].iloc[article_id, 1],
"article_id": int(article_id),
"journal_id": int(journal_id)
}
links.append(link)
return links
def validation(user_input):
user_words = set(user_input.lower().split())
if any(word in stop_words for word in user_words):
return "valid"
else:
return "invalid"
gradio_interface = gradio.Interface(
fn=[get_links,validation],
inputs=[ gradio.inputs.Textbox(label="get links"),
gradio.inputs.Textbox(label="validation")],
outputs=[ gradio.outputs.JSON(),gradio.outputs.JSON()],
examples=[
["AI"],
["Sai sahoo"],
["Rocket Science"]
],
title="Sprinkler Article Generator API",
description="This is a AI powered REST API with Gradio and Huggingface Spaces – for free! Based on [this article](https://www.tomsoderlund.com/ai/building-ai-powered-rest-api). See the **Use via API** link at the bottom of this page.",
article="© ScholarSync 2023"
)
gradio_interface.launch()
|