hackathon-trial
#1
by
shivampandit
- opened
- .python-version +1 -1
- README.md +4 -11
- app.py +3 -4
- pyproject.toml +1 -1
- requirements.txt +3 -1
- src/agent_hackathon/multiagent.py +36 -38
- uv.lock +0 -0
.python-version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
3.
|
|
|
1 |
+
3.12
|
README.md
CHANGED
@@ -3,18 +3,11 @@ title: Ml Research Assistant And Tutor
|
|
3 |
emoji: 👁
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
-
sdk:
|
7 |
-
|
8 |
-
|
9 |
-
tags: [agent-demo-track]
|
10 |
-
pinned: false
|
11 |
license: mit
|
12 |
short_description: Agentic system for ML research and tutoring
|
13 |
-
python_version: 3.11.6
|
14 |
-
preload_from_hub:
|
15 |
-
- Shamik/arxiv_cs_2020_07_2025 arxiv_docs.db
|
16 |
-
|
17 |
---
|
18 |
|
19 |
-
Check out the configuration reference at
|
20 |
-
---
|
|
|
3 |
emoji: 👁
|
4 |
colorFrom: blue
|
5 |
colorTo: purple
|
6 |
+
sdk: docker
|
7 |
+
app_port: 7860
|
8 |
+
pinned: true
|
|
|
|
|
9 |
license: mit
|
10 |
short_description: Agentic system for ML research and tutoring
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
app.py
CHANGED
@@ -13,7 +13,7 @@ nest_asyncio.apply()
|
|
13 |
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
14 |
|
15 |
PRIMARY_HEADING = """# ML Topics Deep Research"""
|
16 |
-
SECONDARY_HEADING = """### This multi agent framework queries a DB containing arxiv ML research papers from Jan 2020 - Jun 6th 2025 for select categories,
|
17 |
|
18 |
For more details on the filtered arxiv ds refer [here](https://huggingface.co/datasets/Shamik/arxiv_cs_2020_07_2025)
|
19 |
"""
|
@@ -67,10 +67,9 @@ with gr.Blocks(fill_height=True) as demo:
|
|
67 |
clear = gr.ClearButton(components=[msg, chatbot])
|
68 |
msg.submit(fn=run, inputs=[msg, api_key, chatbot], outputs=[msg, chatbot])
|
69 |
|
70 |
-
demo.queue(max_size=1).launch(share=False)
|
71 |
|
72 |
-
|
73 |
-
|
74 |
|
75 |
|
76 |
# example queries
|
|
|
13 |
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
14 |
|
15 |
PRIMARY_HEADING = """# ML Topics Deep Research"""
|
16 |
+
SECONDARY_HEADING = """### This multi agent framework searches the web for relevant events, queries a DB containing arxiv ML research papers from Jan 2020 - Jun 6th 2025 for select categories, finds relevant content across different websites to answer the users query.
|
17 |
|
18 |
For more details on the filtered arxiv ds refer [here](https://huggingface.co/datasets/Shamik/arxiv_cs_2020_07_2025)
|
19 |
"""
|
|
|
67 |
clear = gr.ClearButton(components=[msg, chatbot])
|
68 |
msg.submit(fn=run, inputs=[msg, api_key, chatbot], outputs=[msg, chatbot])
|
69 |
|
|
|
70 |
|
71 |
+
if __name__ == "__main__":
|
72 |
+
demo.queue(max_size=1).launch(share=False)
|
73 |
|
74 |
|
75 |
# example queries
|
pyproject.toml
CHANGED
@@ -6,7 +6,7 @@ readme = "README.md"
|
|
6 |
authors = [
|
7 |
{ name = "shamik", email = "[email protected]" }
|
8 |
]
|
9 |
-
requires-python = ">=3.
|
10 |
dependencies = [
|
11 |
"arxiv>=2.2.0",
|
12 |
"flagembedding>=1.3.5",
|
|
|
6 |
authors = [
|
7 |
{ name = "shamik", email = "[email protected]" }
|
8 |
]
|
9 |
+
requires-python = ">=3.12"
|
10 |
dependencies = [
|
11 |
"arxiv>=2.2.0",
|
12 |
"flagembedding>=1.3.5",
|
requirements.txt
CHANGED
@@ -463,7 +463,9 @@ sentence-transformers==4.1.0
|
|
463 |
sentencepiece==0.2.0
|
464 |
# via flagembedding
|
465 |
setuptools==80.9.0
|
466 |
-
# via
|
|
|
|
|
467 |
sgmllib3k==1.0.0
|
468 |
# via feedparser
|
469 |
shellingham==1.5.4
|
|
|
463 |
sentencepiece==0.2.0
|
464 |
# via flagembedding
|
465 |
setuptools==80.9.0
|
466 |
+
# via
|
467 |
+
# pymilvus
|
468 |
+
# torch
|
469 |
sgmllib3k==1.0.0
|
470 |
# via feedparser
|
471 |
shellingham==1.5.4
|
src/agent_hackathon/multiagent.py
CHANGED
@@ -1,9 +1,7 @@
|
|
1 |
-
|
2 |
from datetime import date
|
3 |
|
4 |
-
import nest_asyncio
|
5 |
from llama_index.core.agent.workflow import AgentWorkflow, ReActAgent
|
6 |
-
from llama_index.core.tools import FunctionTool
|
7 |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
8 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
9 |
|
@@ -13,8 +11,6 @@ from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
|
13 |
from src.agent_hackathon.generate_arxiv_responses import ArxivResponseGenerator
|
14 |
from src.agent_hackathon.logger import get_logger
|
15 |
|
16 |
-
nest_asyncio.apply()
|
17 |
-
|
18 |
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False), override=True)
|
19 |
|
20 |
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
@@ -32,32 +28,32 @@ class MultiAgentWorkflow:
|
|
32 |
# provider="nebius",
|
33 |
temperature=0.1,
|
34 |
top_p=0.95,
|
|
|
35 |
# api_key=os.getenv(key="NEBIUS_API_KEY"),
|
36 |
# base_url="https://api.studio.nebius.com/v1/",
|
37 |
-
system_prompt="Don't just plan, but execute the plan until failure.",
|
38 |
)
|
39 |
self._generator = ArxivResponseGenerator(
|
40 |
vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
41 |
)
|
42 |
-
self._arxiv_rag_tool = FunctionTool.from_defaults(
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
)
|
48 |
self._duckduckgo_search_tool = [
|
49 |
tool
|
50 |
for tool in DuckDuckGoSearchToolSpec().to_tool_list()
|
51 |
if tool.metadata.name == "duckduckgo_full_search"
|
52 |
]
|
53 |
-
self._arxiv_agent = ReActAgent(
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
)
|
61 |
self._websearch_agent = ReActAgent(
|
62 |
name="web_search",
|
63 |
description="Searches the web",
|
@@ -67,8 +63,8 @@ class MultiAgentWorkflow:
|
|
67 |
)
|
68 |
|
69 |
self._workflow = AgentWorkflow(
|
70 |
-
agents=[self.
|
71 |
-
root_agent="
|
72 |
timeout=180,
|
73 |
)
|
74 |
# AgentWorkflow.from_tools_or_functions(
|
@@ -120,27 +116,29 @@ class MultiAgentWorkflow:
|
|
120 |
"""
|
121 |
logger.info("Running multi-agent workflow.")
|
122 |
try:
|
|
|
123 |
user_msg = (
|
124 |
-
f"
|
125 |
-
f"
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
)
|
129 |
-
results = await self._workflow.run(user_msg=user_msg)
|
130 |
logger.info("Workflow run completed successfully.")
|
131 |
-
return
|
132 |
except Exception as err:
|
133 |
logger.error(f"Workflow run failed: {err}")
|
134 |
raise
|
135 |
|
136 |
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
1 |
+
import asyncio
|
2 |
from datetime import date
|
3 |
|
|
|
4 |
from llama_index.core.agent.workflow import AgentWorkflow, ReActAgent
|
|
|
5 |
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
6 |
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
7 |
|
|
|
11 |
from src.agent_hackathon.generate_arxiv_responses import ArxivResponseGenerator
|
12 |
from src.agent_hackathon.logger import get_logger
|
13 |
|
|
|
|
|
14 |
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False), override=True)
|
15 |
|
16 |
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
|
|
28 |
# provider="nebius",
|
29 |
temperature=0.1,
|
30 |
top_p=0.95,
|
31 |
+
max_tokens=8192,
|
32 |
# api_key=os.getenv(key="NEBIUS_API_KEY"),
|
33 |
# base_url="https://api.studio.nebius.com/v1/",
|
|
|
34 |
)
|
35 |
self._generator = ArxivResponseGenerator(
|
36 |
vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
37 |
)
|
38 |
+
# self._arxiv_rag_tool = FunctionTool.from_defaults(
|
39 |
+
# fn=self._arxiv_rag,
|
40 |
+
# name="arxiv_rag",
|
41 |
+
# description="Retrieves arxiv research papers.",
|
42 |
+
# return_direct=True,
|
43 |
+
# )
|
44 |
self._duckduckgo_search_tool = [
|
45 |
tool
|
46 |
for tool in DuckDuckGoSearchToolSpec().to_tool_list()
|
47 |
if tool.metadata.name == "duckduckgo_full_search"
|
48 |
]
|
49 |
+
# self._arxiv_agent = ReActAgent(
|
50 |
+
# name="arxiv_agent",
|
51 |
+
# description="Retrieves information about arxiv research papers",
|
52 |
+
# system_prompt="You are arxiv research paper agent, who retrieves information "
|
53 |
+
# "about arxiv research papers.",
|
54 |
+
# tools=[self._arxiv_rag_tool],
|
55 |
+
# llm=self.llm,
|
56 |
+
# )
|
57 |
self._websearch_agent = ReActAgent(
|
58 |
name="web_search",
|
59 |
description="Searches the web",
|
|
|
63 |
)
|
64 |
|
65 |
self._workflow = AgentWorkflow(
|
66 |
+
agents=[self._websearch_agent],
|
67 |
+
root_agent="web_search",
|
68 |
timeout=180,
|
69 |
)
|
70 |
# AgentWorkflow.from_tools_or_functions(
|
|
|
116 |
"""
|
117 |
logger.info("Running multi-agent workflow.")
|
118 |
try:
|
119 |
+
research_papers = self._arxiv_rag(query=user_query)
|
120 |
user_msg = (
|
121 |
+
f"search with the web search agent to find any relevant events related to: {user_query}.\n"
|
122 |
+
f" The web search results relevant to the current year: {date.today().year}. \n"
|
123 |
+
)
|
124 |
+
web_search_results = await self._workflow.run(user_msg=user_msg)
|
125 |
+
final_res = (
|
126 |
+
research_papers + "\n\n" + web_search_results.response.blocks[0].text
|
127 |
)
|
|
|
128 |
logger.info("Workflow run completed successfully.")
|
129 |
+
return final_res
|
130 |
except Exception as err:
|
131 |
logger.error(f"Workflow run failed: {err}")
|
132 |
raise
|
133 |
|
134 |
|
135 |
+
if __name__ == "__main__":
|
136 |
+
USER_QUERY = "i want to learn more about nlp"
|
137 |
+
workflow = MultiAgentWorkflow()
|
138 |
+
logger.info("Starting workflow for user query.")
|
139 |
+
try:
|
140 |
+
result = asyncio.run(workflow.run(user_query=USER_QUERY))
|
141 |
+
logger.info("Workflow finished. Output below:")
|
142 |
+
print(result)
|
143 |
+
except Exception as err:
|
144 |
+
logger.error(f"Error during workflow execution: {err}")
|
uv.lock
CHANGED
The diff for this file is too large to render.
See raw diff
|
|