Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pickle | |
import re | |
#loading models | |
clf = pickle.load(open('clf.pkl','rb')) | |
tfidf = pickle.load(open('tfidf.pkl','rb')) | |
def clean_resume(resume_text): | |
""" | |
Clean the text in the resume i.e. remove unwanted chars in the text. For e.g. | |
1 URLs, | |
2 Hashtags, | |
3 Mentions, | |
4 Special Chars, | |
5 Punctuations | |
Parameters: | |
resume_text (str): The input resume text to be cleaned. | |
Returns: | |
clean_text (str): Clean Resume. | |
""" | |
clean_text = re.sub('http\S+\s*', ' ', resume_text) | |
clean_text = re.sub('RT|cc', ' ', clean_text) | |
clean_text = re.sub('#\S+', '', clean_text) | |
clean_text = re.sub('@\S+', ' ', clean_text) | |
clean_text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', clean_text) | |
clean_text = re.sub(r'[^\x00-\x7f]', r' ', clean_text) | |
clean_text = re.sub('\s+', ' ', clean_text) | |
return clean_text | |
def remove_stopwords(text, language='english'): | |
""" | |
Remove stopwords from a given text. | |
Parameters: | |
text (str): The input text from which to remove stopwords. | |
language (str): The language of the stopwords. Default is 'english'. | |
Returns: | |
filtered_text (str): Text without stopwords. | |
""" | |
stop_words = set([ | |
"i", "me", "my", "myself", "we", "our", "ours", "ourselves", "you", "your", | |
"yours", "yourself", "yourselves", "he", "him", "his", "himself", "she", | |
"her", "hers", "herself", "it", "its", "itself", "they", "them", "their", | |
"theirs", "themselves", "what", "which", "who", "whom", "this", "that", | |
"these", "those", "am", "is", "are", "was", "were", "be", "been", "being", | |
"have", "has", "had", "having", "do", "does", "did", "doing", "a", "an", | |
"the", "and", "but", "if", "or", "because", "as", "until", "while", "of", | |
"at", "by", "for", "with", "about", "against", "between", "into", "through", | |
"during", "before", "after", "above", "below", "to", "from", "up", "down", | |
"in", "out", "on", "off", "over", "under", "again", "further", "then", | |
"once", "here", "there", "when", "where", "why", "how", "all", "any", | |
"both", "each", "few", "more", "most", "other", "some", "such", "no", | |
"nor", "not", "only", "own", "same", "so", "than", "too", "very", "s", | |
"t", "can", "will", "just", "don", "should", "now" | |
]) | |
words = text.split() | |
filtered_words = [word for word in words if word.lower() not in stop_words] | |
filtered_text = ' '.join(filtered_words) | |
return filtered_text | |
# web app | |
def main(): | |
st.title("Resume Screening App") | |
uploaded_file = st.file_uploader('Upload Resume', type=['txt','pdf']) | |
if uploaded_file is not None: | |
try: | |
resume_bytes = uploaded_file.read() | |
resume_text = resume_bytes.decode('utf-8') | |
except UnicodeDecodeError: | |
# If UTF-8 decoding fails, try decoding with 'latin-1' | |
resume_text = resume_bytes.decode('latin-1') | |
cleaned_resume = clean_resume(resume_text) | |
cleaned_resume = remove_stopwords(cleaned_resume) | |
input_features = tfidf.transform([cleaned_resume]) | |
prediction_id = clf.predict(input_features)[0] | |
st.write(prediction_id) | |
# Map category ID to category name | |
category_mapping = { | |
15: "Java Developer", | |
23: "Testing", | |
8: "DevOps Engineer", | |
20: "Python Developer", | |
24: "Web Designing", | |
12: "HR", | |
13: "Hadoop", | |
3: "Blockchain", | |
10: "ETL Developer", | |
18: "Operations Manager", | |
6: "Data Science", | |
22: "Sales", | |
16: "Mechanical Engineer", | |
1: "Arts", | |
7: "Database", | |
11: "Electrical Engineering", | |
14: "Health and fitness", | |
19: "PMO", | |
4: "Business Analyst", | |
9: "DotNet Developer", | |
2: "Automation Testing", | |
17: "Network Security Engineer", | |
21: "SAP Developer", | |
5: "Civil Engineer", | |
0: "Advocate", | |
} | |
category_name = category_mapping.get(prediction_id, "Unknown") | |
st.write("Predicted Category:", category_name) | |
# python main | |
if __name__ == "__main__": | |
main() |