cloud-rag-webhook / CLAUDE_HF.md
Ultronprime's picture
Upload CLAUDE_HF.md with huggingface_hub
b1a2e15 verified
# Hugging Face Implementation Plan
## Overview
This document outlines the plan to rebuild the RAG system using Hugging Face's models and capabilities instead of Google Cloud services, while preserving the original cloud implementation as a separate option.
## Repository Links
- GitHub: https://github.com/Daanworg/cloud-rag-webhook
- Hugging Face Space: https://huggingface.co/spaces/Ultronprime/cloud-rag-webhook
## Migration Strategy
The key difference in our approach is to **replace all Google Cloud dependencies with Hugging Face models and tools**:
1. **Replace Google's DocumentAI** β†’ Use Hugging Face OCR models (like `microsoft/layoutlm-base-uncased`)
2. **Replace Vertex AI** β†’ Use Hugging Face embeddings models (like `sentence-transformers/all-MiniLM-L6-v2`)
3. **Replace BigQuery** β†’ Use FAISS/Chroma vector store with local storage or Hugging Face Datasets
4. **Replace Cloud Storage** β†’ Use Hugging Face's persistent storage
5. **Replace Cloud Run** β†’ Use Hugging Face Spaces continuous execution
## Implementation Steps
1. **Set Up New Architecture**:
- Create a revised Dockerfile for Hugging Face
- Set up persistent storage (20GB purchased)
- Configure A100 GPU using `accelerate` for pro users
2. **Replace Text Processing Pipeline**:
- Create a new OCR module using Transformers document models
- Implement a chunking system using pure Python
- Add text cleaning and processing without DocumentAI
3. **Replace Vector Database**:
- Implement FAISS/Chroma for vector storage
- Use Hugging Face Datasets for persistent indexed storage
- Create migration utility to move data from BigQuery
4. **Replace Embedding System**:
- Use `sentence-transformers` models for embeddings
- Implement similarity search using FAISS/Chroma
- Create a compatible API to replace Vertex AI functions
5. **Update Application Layer**:
- Modify Flask app to run on Hugging Face
- Update file handling to use local storage
- Create model caching for better performance
## Key Components
1. **Text Processing**:
```python
# New approach using Hugging Face models
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import Dataset
def process_text(text_content):
"""Process text using Hugging Face models."""
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased")
# Process and chunk the text
chunks = chunk_text(text_content)
# Store in persistent dataset
dataset = Dataset.from_dict({"text": chunks})
dataset.save_to_disk("./data/chunks")
return dataset
```
2. **Vector Storage**:
```python
# New approach using FAISS
import faiss
import numpy as np
from sentence_transformers import SentenceTransformer
class FAISSVectorStore:
def __init__(self):
self.model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
self.dimension = self.model.get_sentence_embedding_dimension()
self.index = faiss.IndexFlatL2(self.dimension)
self.texts = []
def add_texts(self, texts):
embeddings = self.model.encode(texts)
self.index.add(np.array(embeddings, dtype=np.float32))
self.texts.extend(texts)
def search(self, query, k=5):
query_embedding = self.model.encode([query])[0]
distances, indices = self.index.search(
np.array([query_embedding], dtype=np.float32), k
)
return [self.texts[i] for i in indices[0]]
```
3. **Hugging Face Space Configuration**:
```yaml
title: RAG Document Processing
emoji: πŸ“„
colorFrom: blue
colorTo: green
sdk: docker
app_port: 7860
pinned: false
models:
- sentence-transformers/all-MiniLM-L6-v2
- facebook/bart-large-cnn
license: apache-2.0
```
## Automation Plan
1. **Background Processing**:
- Implement a file watcher for the persistent storage directory
- Process files automatically when added to upload directory
- Use Gradio/Streamlit for UI with background task system
2. **Scheduled Tasks**:
- Use Hugging Face Space's GitHub Actions for scheduling
- Run index maintenance tasks periodically
- Implement file processing queue for batch operations
3. **GitHub Integration**:
- Push processed data to GitHub repository as backup
- Use GitHub to store model configuration
- Implement version control for processed data
## Required Libraries
```
transformers==4.40.0
datasets==2.17.1
sentence-transformers==2.3.1
faiss-cpu==1.7.4 # or faiss-gpu for CUDA support
gradio==4.19.2
streamlit==1.32.0
langchain==0.1.5
torch==2.1.2
accelerate==0.28.0
```
## Hardware Requirements
- Use Hugging Face Pro's free A100 tier (zero.gpu)
- Configure model inference for optimal performance on GPU
- Set up model caching to reduce memory usage
- Utilize Hugging Face's persistent storage (20GB)
## Project Goals
Create a fully self-contained RAG system on Hugging Face:
1. Process text files automatically
2. Generate embeddings with Hugging Face models
3. Store vectors in FAISS/Chroma on persistent storage
4. Query the data with a simple API
5. Run continuously "under the hood"
6. Utilize Hugging Face Pro benefits (A100 GPU, persistent storage)
## Implementation Files
We'll create the following new files to implement the Hugging Face version:
1. `hf_process_text.py` - Text processing with HF models
2. `hf_embeddings.py` - Embedding generation with sentence-transformers
3. `hf_vector_store.py` - FAISS/Chroma implementation
4. `hf_app.py` - Gradio/Streamlit interface
5. `hf_rag_query.py` - Query interface for HF models
6. `requirements_hf.txt` - HF-specific dependencies
This will allow us to maintain both implementations in parallel.