File size: 16,788 Bytes
9ffc795
 
 
 
a1f2008
1ef829e
a1f2008
9ffc795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792bd1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffc795
 
 
 
792bd1c
9ffc795
 
792bd1c
9ffc795
792bd1c
9ffc795
792bd1c
9ffc795
 
792bd1c
9ffc795
 
792bd1c
9ffc795
792bd1c
9ffc795
 
 
 
 
 
792bd1c
9ffc795
 
 
 
792bd1c
9ffc795
 
 
792bd1c
 
9ffc795
 
792bd1c
 
 
 
 
 
 
 
 
9ffc795
 
 
 
 
 
 
 
 
 
 
 
792bd1c
9ffc795
 
 
 
9d3765e
 
9ffc795
 
 
 
 
792bd1c
9d3765e
 
9ffc795
 
 
792bd1c
9ffc795
 
 
 
 
 
a1f2008
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffc795
792bd1c
9ffc795
 
 
 
792bd1c
 
9ffc795
 
792bd1c
 
9ffc795
 
 
 
 
9720765
5778229
 
9720765
 
9ffc795
 
 
 
 
 
 
 
 
 
 
 
 
 
1f6f70b
51982fa
 
9ffc795
 
 
 
 
 
 
 
 
 
 
9720765
 
9ffc795
 
 
a1f2008
 
 
9ffc795
 
 
 
 
1ef829e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
792bd1c
9ffc795
 
 
 
 
792bd1c
 
9ffc795
 
 
792bd1c
9ffc795
 
 
 
 
 
 
792bd1c
 
9ffc795
 
 
792bd1c
9ffc795
 
 
 
 
 
 
 
 
792bd1c
 
 
9ffc795
4ce8f9e
 
 
9ffc795
8e887ef
9ffc795
4ce8f9e
 
 
 
 
 
 
9ffc795
 
1ef829e
 
9ffc795
1ef829e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e887ef
1ef829e
 
 
 
 
 
 
 
 
 
 
 
 
4ce8f9e
 
 
 
 
 
 
1ef829e
9ffc795
1ef829e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ffc795
 
 
6158c62
0b315c1
 
 
 
 
 
6158c62
9ffc795
6158c62
9ffc795
 
 
 
 
792bd1c
9ffc795
 
 
 
 
792bd1c
9ffc795
 
 
 
 
 
 
1ef829e
 
 
 
 
 
 
 
 
 
 
 
9ffc795
 
 
 
 
 
 
0b315c1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import gradio as gr
import spaces  # Import spaces module for ZeroGPU
from huggingface_hub import login
import os
from json_processor import JsonProcessor
from dag_visualizer import DAGVisualizer
import json

# 1) Read Secrets
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if not hf_token:
    raise RuntimeError("❌ HUGGINGFACE_TOKEN not detected, please check Space Settings β†’ Secrets")
# 2) Login to ensure all subsequent from_pretrained calls have proper permissions
login(hf_token)

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import warnings
import os
warnings.filterwarnings("ignore")

# Model configurations
MODEL_CONFIGS = {
    "1B": {
        "name": "Dart-llm-model-1B",
        "base_model": "meta-llama/Llama-3.2-1B", 
        "lora_model": "YongdongWang/llama-3.2-1b-lora-qlora-dart-llm"
    },
    "3B": {
        "name": "Dart-llm-model-3B",
        "base_model": "meta-llama/Llama-3.2-3B",
        "lora_model": "YongdongWang/llama-3.2-3b-lora-qlora-dart-llm"
    },
    "8B": {
        "name": "Dart-llm-model-8B",
        "base_model": "meta-llama/Llama-3.1-8B",
        "lora_model": "YongdongWang/llama-3.1-8b-lora-qlora-dart-llm"
    }
}

DEFAULT_MODEL = "1B"  # Set 1B as default

# Global variables to store model and tokenizer
model = None
tokenizer = None
current_model_config = None
model_loaded = False

def load_model_and_tokenizer(selected_model=DEFAULT_MODEL):
    """Load tokenizer - executed on CPU"""
    global tokenizer, model_loaded, current_model_config
    
    if model_loaded and current_model_config == selected_model:
        return
    
    print(f"πŸ”„ Loading tokenizer for {MODEL_CONFIGS[selected_model]['name']}...")
    
    # Load tokenizer (on CPU)
    base_model = MODEL_CONFIGS[selected_model]["base_model"]
    tokenizer = AutoTokenizer.from_pretrained(
        base_model, 
        use_fast=False,
        trust_remote_code=True
    )
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    current_model_config = selected_model
    model_loaded = True
    print("βœ… Tokenizer loaded successfully!")

@spaces.GPU(duration=60)  # Request GPU for loading model at startup
def load_model_on_gpu(selected_model=DEFAULT_MODEL):
    """Load model on GPU"""
    global model
    
    # If model is already loaded and it's the same model, return it
    if model is not None and current_model_config == selected_model:
        return model
    
    # Clear existing model if switching
    if model is not None:
        print("πŸ—‘οΈ Clearing existing model from GPU...")
        del model
        torch.cuda.empty_cache()
        model = None
    
    model_config = MODEL_CONFIGS[selected_model]
    print(f"πŸ”„ Loading {model_config['name']} on GPU...")
    
    try:
        # 4-bit quantization configuration
        bnb_config = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_quant_type="nf4",
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
        )
        
        # Load base model
        base_model = AutoModelForCausalLM.from_pretrained(
            model_config["base_model"],
            quantization_config=bnb_config,
            device_map="auto",
            torch_dtype=torch.float16,
            trust_remote_code=True,
            low_cpu_mem_usage=True,
            use_safetensors=True
        )
        
        # Load LoRA adapter
        model = PeftModel.from_pretrained(
            base_model, 
            model_config["lora_model"],
            torch_dtype=torch.float16,
            use_safetensors=True
        )
        model.eval()
        
        print(f"βœ… {model_config['name']} loaded on GPU successfully!")
        return model
        
    except Exception as load_error:
        print(f"❌ Model loading failed: {load_error}")
        raise load_error

def process_json_in_response(response):
    """Process and format JSON content in the response"""
    try:
        # Check if response contains JSON-like content
        if '{' in response and '}' in response:
            processor = JsonProcessor()
            
            # Try to process the response for JSON content
            processed_json = processor.process_response(response)
            
            if processed_json:
                # Format the JSON nicely
                formatted_json = json.dumps(processed_json, indent=2, ensure_ascii=False)
                # Replace the JSON part in the response
                import re
                json_pattern = r'\{.*\}'
                match = re.search(json_pattern, response, re.DOTALL)
                if match:
                    # Replace the matched JSON with the formatted version
                    response = response.replace(match.group(), formatted_json)
            
        return response
    except Exception:
        # If processing fails, return original response
        return response

@spaces.GPU(duration=60)  # GPU inference
def generate_response_gpu(prompt, max_tokens=512, selected_model=DEFAULT_MODEL):
    """Generate response - executed on GPU"""
    global model
    
    # Ensure tokenizer is loaded
    if tokenizer is None or current_model_config != selected_model:
        load_model_and_tokenizer(selected_model)
    
    # Ensure model is loaded on GPU
    if model is None or current_model_config != selected_model:
        model = load_model_on_gpu(selected_model)
    
    if model is None:
        return "❌ Model failed to load. Please check the Space logs."
    
    try:
        formatted_prompt = (
            "### Instruction:\n"
            f"{prompt.strip()}\n\n"
            "### Response:\n"
        )
        
        # Encode input
        inputs = tokenizer(
            formatted_prompt, 
            return_tensors="pt",
            truncation=True,
            max_length=2048
        ).to(model.device)
        
        # Generate response
        with torch.no_grad():
            outputs = model.generate(
                **inputs,
                max_new_tokens=max_tokens,
                do_sample=False,
                temperature=None,
                top_p=None,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                repetition_penalty=1.1,
                early_stopping=True,
                no_repeat_ngram_size=3
            )
        
        # Decode output
        response = tokenizer.decode(outputs[0], skip_special_tokens=True)
        
        # Extract generated part
        if "### Response:" in response:
            response = response.split("### Response:")[-1].strip()
        elif len(response) > len(formatted_prompt):
            response = response[len(formatted_prompt):].strip()
        
        # Process JSON if present in response
        response = process_json_in_response(response)
        
        return response if response else "❌ No response generated. Please try again with a different prompt."
    
    except Exception as generation_error:
        return f"❌ Generation Error: {str(generation_error)}"

def create_dag_visualization(task_json_str):
    """Create DAG visualization from task JSON"""
    try:
        if not task_json_str.strip():
            return None, "Please provide task JSON data"
        
        # Parse JSON
        task_data = json.loads(task_json_str)
        
        # Create DAG visualizer
        dag_visualizer = DAGVisualizer()
        
        # Generate visualization
        image_path = dag_visualizer.create_dag_visualization(task_data)
        
        if image_path:
            return image_path, "βœ… DAG visualization created successfully!"
        else:
            return None, "❌ Failed to create DAG visualization"
            
    except json.JSONDecodeError as e:
        return None, f"❌ JSON Parse Error: {str(e)}"
    except Exception as e:
        return None, f"❌ DAG Creation Error: {str(e)}"

def chat_interface(message, history, max_tokens, selected_model):
    """Chat interface - runs on CPU, calls GPU functions"""
    if not message.strip():
        return history, ""
    
    # Initialize tokenizer (if needed)
    if tokenizer is None or current_model_config != selected_model:
        load_model_and_tokenizer(selected_model)
    
    try:
        # Call GPU function to generate response
        response = generate_response_gpu(message, max_tokens, selected_model)
        history.append((message, response))
        return history, ""
    except Exception as chat_error:
        error_msg = f"❌ Chat Error: {str(chat_error)}"
        history.append((message, error_msg))
        return history, ""

# Load tokenizer at startup with default model
load_model_and_tokenizer(DEFAULT_MODEL)

# Create Gradio application
with gr.Blocks(
    title="Robot Task Planning - DART-LLM Multi-Model",
    theme=gr.themes.Soft(),
    css="""
    .gradio-container {
        max-width: 1200px;
        margin: auto;
    }
    """
) as app:
    gr.Markdown("""
    # πŸ€– DART-LLM Multi-Model - Robot Task Planning
    
    Choose from **three fine-tuned models** specialized for **robot task planning** using QLoRA technique:
    
    - **πŸš€ Dart-llm-model-1B**: Ready for Jetson Nano deployment (870MB GGUF)
    - **βš–οΈ Dart-llm-model-3B**: Ready for Jetson Xavier NX deployment (1.9GB GGUF)
    - **🎯 Dart-llm-model-8B**: Ready for Jetson AGX Xavier/Orin deployment (4.6GB GGUF)
    
    **Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots. **Edge-ready for Jetson devices with DAG Visualization!**
    
    ## πŸ”§ Recommended for Jetson Deployment (GGUF Models)
    For optimal edge deployment performance, use these GGUF quantized models:
    - **[YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf)** (870MB) - Jetson Nano/Orin Nano
    - **[YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf)** (1.9GB) - Jetson Orin NX/AGX Orin
    - **[YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf)** (4.6GB) - High-end Jetson AGX Orin
    
    πŸ’‘ **Deploy with**: Ollama, llama.cpp, or llama-cpp-python for efficient edge inference
    """)
    
    with gr.Tabs():
        with gr.Tab("πŸ’¬ Task Planning"):
            with gr.Row():
                with gr.Column(scale=3):
                    chatbot = gr.Chatbot(
                        label="Task Planning Results",
                        height=500,
                        show_label=True,
                        container=True,
                        bubble_full_width=False,
                        show_copy_button=True
                    )
                    
                    msg = gr.Textbox(
                        label="Robot Command",
                        placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...",
                        lines=2,
                        max_lines=5,
                        show_label=True,
                        container=True
                    )
                    
                    with gr.Row():
                        send_btn = gr.Button("πŸš€ Generate Tasks", variant="primary", size="sm")
                        clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary", size="sm")
                
                with gr.Column(scale=1):
                    gr.Markdown("### βš™οΈ Generation Settings")
                    
                    model_selector = gr.Dropdown(
                        choices=[(config["name"], key) for key, config in MODEL_CONFIGS.items()],
                        value=DEFAULT_MODEL,
                        label="Model Size",
                        info="Select model for your Jetson device (1B = Nano, 3B = Xavier NX, 8B = AGX)",
                        interactive=True
                    )
                    
                    max_tokens = gr.Slider(
                        minimum=50,
                        maximum=5000,
                        value=512,
                        step=10,
                        label="Max Tokens",
                        info="Maximum number of tokens to generate"
                    )
                    
                    gr.Markdown("""
                    ### πŸ”§ GGUF Models for Jetson Deployment
                    **Recommended for edge deployment:**
                    - **1B (870MB)**: Jetson Nano/Orin Nano (2GB RAM)
                    - **3B (1.9GB)**: Jetson Orin NX/AGX Orin (4GB RAM)  
                    - **8B (4.6GB)**: High-end Jetson AGX Orin (8GB RAM)
                    
                    πŸ’‘ Use **Ollama** or **llama.cpp** for efficient inference
                    """)
        
        with gr.Tab("πŸ“Š DAG Visualization"):
            with gr.Row():
                with gr.Column(scale=2):
                    json_input = gr.Textbox(
                        label="Task JSON Data",
                        placeholder="Paste the generated task JSON here to create a DAG visualization...",
                        lines=15,
                        max_lines=25,
                        show_label=True,
                        container=True
                    )
                    
                    with gr.Row():
                        dag_btn = gr.Button("🎨 Generate DAG", variant="primary", size="sm")
                        dag_clear_btn = gr.Button("πŸ—‘οΈ Clear", variant="secondary", size="sm")
                    
                    dag_status = gr.Textbox(
                        label="Status",
                        value="Ready to generate DAG visualization",
                        interactive=False,
                        show_label=True
                    )
                
                with gr.Column(scale=3):
                    dag_output = gr.Image(
                        label="Task Dependency Graph",
                        show_label=True,
                        container=True,
                        height=600
                    )
                    
                    gr.Markdown("""
                    ### πŸ“ˆ DAG Features
                    - **Node Colors**: Red (Start), Orange (Intermediate), Purple (End)
                    - **Arrows**: Show task dependencies
                    - **Layout**: Hierarchical based on dependencies
                    - **Details**: Task info boxes with robots and objects
                    """)
    
    # Example conversations
    gr.Examples(
        examples=[
            "Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle.",
            "Drive the Excavator 1 to the obstacle, and perform excavation to clear the obstacle.",
            "Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading.",
            "Move Excavator 1 and Dump Truck 1 to soil area 2; Excavator 1 will excavate and unload, then Dump Truck 1 returns to the starting position to unload.",
            "Excavator 1 is guided to the obstacle to excavate and unload to clear the obstacle, then excavator 1 and dump truck 1 are moved to the soil area, and the excavator excavates and unloads. Finally, dump truck 1 unloads the soil into the puddle.",
            "Excavator 1 goes to the obstacle to excavate and unload to clear the obstacle. Once the obstacle is cleared, mobilize all available robots to proceed to the puddle area for inspection.",
        ],
        inputs=msg,
        label="πŸ’‘ Example Operator Commands"
    )
    
    # Event handling
    msg.submit(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, model_selector],
        outputs=[chatbot, msg]
    )
    
    send_btn.click(
        chat_interface,
        inputs=[msg, chatbot, max_tokens, model_selector],
        outputs=[chatbot, msg]
    )
    
    clear_btn.click(
        lambda: ([], ""),
        outputs=[chatbot, msg]
    )
    
    # DAG visualization event handlers
    dag_btn.click(
        create_dag_visualization,
        inputs=[json_input],
        outputs=[dag_output, dag_status]
    )
    
    dag_clear_btn.click(
        lambda: ("", None, "Ready to generate DAG visualization"),
        outputs=[json_input, dag_output, dag_status]
    )

if __name__ == "__main__":
    app.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        show_error=True
    )