Spaces:
Sleeping
Sleeping
File size: 16,788 Bytes
9ffc795 a1f2008 1ef829e a1f2008 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 9d3765e 9ffc795 792bd1c 9d3765e 9ffc795 792bd1c 9ffc795 a1f2008 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 9720765 5778229 9720765 9ffc795 1f6f70b 51982fa 9ffc795 9720765 9ffc795 a1f2008 9ffc795 1ef829e 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 4ce8f9e 9ffc795 8e887ef 9ffc795 4ce8f9e 9ffc795 1ef829e 9ffc795 1ef829e 8e887ef 1ef829e 4ce8f9e 1ef829e 9ffc795 1ef829e 9ffc795 6158c62 0b315c1 6158c62 9ffc795 6158c62 9ffc795 792bd1c 9ffc795 792bd1c 9ffc795 1ef829e 9ffc795 0b315c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 |
import gradio as gr
import spaces # Import spaces module for ZeroGPU
from huggingface_hub import login
import os
from json_processor import JsonProcessor
from dag_visualizer import DAGVisualizer
import json
# 1) Read Secrets
hf_token = os.getenv("HUGGINGFACE_TOKEN")
if not hf_token:
raise RuntimeError("β HUGGINGFACE_TOKEN not detected, please check Space Settings β Secrets")
# 2) Login to ensure all subsequent from_pretrained calls have proper permissions
login(hf_token)
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
from peft import PeftModel
import warnings
import os
warnings.filterwarnings("ignore")
# Model configurations
MODEL_CONFIGS = {
"1B": {
"name": "Dart-llm-model-1B",
"base_model": "meta-llama/Llama-3.2-1B",
"lora_model": "YongdongWang/llama-3.2-1b-lora-qlora-dart-llm"
},
"3B": {
"name": "Dart-llm-model-3B",
"base_model": "meta-llama/Llama-3.2-3B",
"lora_model": "YongdongWang/llama-3.2-3b-lora-qlora-dart-llm"
},
"8B": {
"name": "Dart-llm-model-8B",
"base_model": "meta-llama/Llama-3.1-8B",
"lora_model": "YongdongWang/llama-3.1-8b-lora-qlora-dart-llm"
}
}
DEFAULT_MODEL = "1B" # Set 1B as default
# Global variables to store model and tokenizer
model = None
tokenizer = None
current_model_config = None
model_loaded = False
def load_model_and_tokenizer(selected_model=DEFAULT_MODEL):
"""Load tokenizer - executed on CPU"""
global tokenizer, model_loaded, current_model_config
if model_loaded and current_model_config == selected_model:
return
print(f"π Loading tokenizer for {MODEL_CONFIGS[selected_model]['name']}...")
# Load tokenizer (on CPU)
base_model = MODEL_CONFIGS[selected_model]["base_model"]
tokenizer = AutoTokenizer.from_pretrained(
base_model,
use_fast=False,
trust_remote_code=True
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
current_model_config = selected_model
model_loaded = True
print("β
Tokenizer loaded successfully!")
@spaces.GPU(duration=60) # Request GPU for loading model at startup
def load_model_on_gpu(selected_model=DEFAULT_MODEL):
"""Load model on GPU"""
global model
# If model is already loaded and it's the same model, return it
if model is not None and current_model_config == selected_model:
return model
# Clear existing model if switching
if model is not None:
print("ποΈ Clearing existing model from GPU...")
del model
torch.cuda.empty_cache()
model = None
model_config = MODEL_CONFIGS[selected_model]
print(f"π Loading {model_config['name']} on GPU...")
try:
# 4-bit quantization configuration
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
model_config["base_model"],
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.float16,
trust_remote_code=True,
low_cpu_mem_usage=True,
use_safetensors=True
)
# Load LoRA adapter
model = PeftModel.from_pretrained(
base_model,
model_config["lora_model"],
torch_dtype=torch.float16,
use_safetensors=True
)
model.eval()
print(f"β
{model_config['name']} loaded on GPU successfully!")
return model
except Exception as load_error:
print(f"β Model loading failed: {load_error}")
raise load_error
def process_json_in_response(response):
"""Process and format JSON content in the response"""
try:
# Check if response contains JSON-like content
if '{' in response and '}' in response:
processor = JsonProcessor()
# Try to process the response for JSON content
processed_json = processor.process_response(response)
if processed_json:
# Format the JSON nicely
formatted_json = json.dumps(processed_json, indent=2, ensure_ascii=False)
# Replace the JSON part in the response
import re
json_pattern = r'\{.*\}'
match = re.search(json_pattern, response, re.DOTALL)
if match:
# Replace the matched JSON with the formatted version
response = response.replace(match.group(), formatted_json)
return response
except Exception:
# If processing fails, return original response
return response
@spaces.GPU(duration=60) # GPU inference
def generate_response_gpu(prompt, max_tokens=512, selected_model=DEFAULT_MODEL):
"""Generate response - executed on GPU"""
global model
# Ensure tokenizer is loaded
if tokenizer is None or current_model_config != selected_model:
load_model_and_tokenizer(selected_model)
# Ensure model is loaded on GPU
if model is None or current_model_config != selected_model:
model = load_model_on_gpu(selected_model)
if model is None:
return "β Model failed to load. Please check the Space logs."
try:
formatted_prompt = (
"### Instruction:\n"
f"{prompt.strip()}\n\n"
"### Response:\n"
)
# Encode input
inputs = tokenizer(
formatted_prompt,
return_tensors="pt",
truncation=True,
max_length=2048
).to(model.device)
# Generate response
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=max_tokens,
do_sample=False,
temperature=None,
top_p=None,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
repetition_penalty=1.1,
early_stopping=True,
no_repeat_ngram_size=3
)
# Decode output
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract generated part
if "### Response:" in response:
response = response.split("### Response:")[-1].strip()
elif len(response) > len(formatted_prompt):
response = response[len(formatted_prompt):].strip()
# Process JSON if present in response
response = process_json_in_response(response)
return response if response else "β No response generated. Please try again with a different prompt."
except Exception as generation_error:
return f"β Generation Error: {str(generation_error)}"
def create_dag_visualization(task_json_str):
"""Create DAG visualization from task JSON"""
try:
if not task_json_str.strip():
return None, "Please provide task JSON data"
# Parse JSON
task_data = json.loads(task_json_str)
# Create DAG visualizer
dag_visualizer = DAGVisualizer()
# Generate visualization
image_path = dag_visualizer.create_dag_visualization(task_data)
if image_path:
return image_path, "β
DAG visualization created successfully!"
else:
return None, "β Failed to create DAG visualization"
except json.JSONDecodeError as e:
return None, f"β JSON Parse Error: {str(e)}"
except Exception as e:
return None, f"β DAG Creation Error: {str(e)}"
def chat_interface(message, history, max_tokens, selected_model):
"""Chat interface - runs on CPU, calls GPU functions"""
if not message.strip():
return history, ""
# Initialize tokenizer (if needed)
if tokenizer is None or current_model_config != selected_model:
load_model_and_tokenizer(selected_model)
try:
# Call GPU function to generate response
response = generate_response_gpu(message, max_tokens, selected_model)
history.append((message, response))
return history, ""
except Exception as chat_error:
error_msg = f"β Chat Error: {str(chat_error)}"
history.append((message, error_msg))
return history, ""
# Load tokenizer at startup with default model
load_model_and_tokenizer(DEFAULT_MODEL)
# Create Gradio application
with gr.Blocks(
title="Robot Task Planning - DART-LLM Multi-Model",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 1200px;
margin: auto;
}
"""
) as app:
gr.Markdown("""
# π€ DART-LLM Multi-Model - Robot Task Planning
Choose from **three fine-tuned models** specialized for **robot task planning** using QLoRA technique:
- **π Dart-llm-model-1B**: Ready for Jetson Nano deployment (870MB GGUF)
- **βοΈ Dart-llm-model-3B**: Ready for Jetson Xavier NX deployment (1.9GB GGUF)
- **π― Dart-llm-model-8B**: Ready for Jetson AGX Xavier/Orin deployment (4.6GB GGUF)
**Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots. **Edge-ready for Jetson devices with DAG Visualization!**
## π§ Recommended for Jetson Deployment (GGUF Models)
For optimal edge deployment performance, use these GGUF quantized models:
- **[YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf)** (870MB) - Jetson Nano/Orin Nano
- **[YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf)** (1.9GB) - Jetson Orin NX/AGX Orin
- **[YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf)** (4.6GB) - High-end Jetson AGX Orin
π‘ **Deploy with**: Ollama, llama.cpp, or llama-cpp-python for efficient edge inference
""")
with gr.Tabs():
with gr.Tab("π¬ Task Planning"):
with gr.Row():
with gr.Column(scale=3):
chatbot = gr.Chatbot(
label="Task Planning Results",
height=500,
show_label=True,
container=True,
bubble_full_width=False,
show_copy_button=True
)
msg = gr.Textbox(
label="Robot Command",
placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...",
lines=2,
max_lines=5,
show_label=True,
container=True
)
with gr.Row():
send_btn = gr.Button("π Generate Tasks", variant="primary", size="sm")
clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm")
with gr.Column(scale=1):
gr.Markdown("### βοΈ Generation Settings")
model_selector = gr.Dropdown(
choices=[(config["name"], key) for key, config in MODEL_CONFIGS.items()],
value=DEFAULT_MODEL,
label="Model Size",
info="Select model for your Jetson device (1B = Nano, 3B = Xavier NX, 8B = AGX)",
interactive=True
)
max_tokens = gr.Slider(
minimum=50,
maximum=5000,
value=512,
step=10,
label="Max Tokens",
info="Maximum number of tokens to generate"
)
gr.Markdown("""
### π§ GGUF Models for Jetson Deployment
**Recommended for edge deployment:**
- **1B (870MB)**: Jetson Nano/Orin Nano (2GB RAM)
- **3B (1.9GB)**: Jetson Orin NX/AGX Orin (4GB RAM)
- **8B (4.6GB)**: High-end Jetson AGX Orin (8GB RAM)
π‘ Use **Ollama** or **llama.cpp** for efficient inference
""")
with gr.Tab("π DAG Visualization"):
with gr.Row():
with gr.Column(scale=2):
json_input = gr.Textbox(
label="Task JSON Data",
placeholder="Paste the generated task JSON here to create a DAG visualization...",
lines=15,
max_lines=25,
show_label=True,
container=True
)
with gr.Row():
dag_btn = gr.Button("π¨ Generate DAG", variant="primary", size="sm")
dag_clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm")
dag_status = gr.Textbox(
label="Status",
value="Ready to generate DAG visualization",
interactive=False,
show_label=True
)
with gr.Column(scale=3):
dag_output = gr.Image(
label="Task Dependency Graph",
show_label=True,
container=True,
height=600
)
gr.Markdown("""
### π DAG Features
- **Node Colors**: Red (Start), Orange (Intermediate), Purple (End)
- **Arrows**: Show task dependencies
- **Layout**: Hierarchical based on dependencies
- **Details**: Task info boxes with robots and objects
""")
# Example conversations
gr.Examples(
examples=[
"Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle.",
"Drive the Excavator 1 to the obstacle, and perform excavation to clear the obstacle.",
"Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading.",
"Move Excavator 1 and Dump Truck 1 to soil area 2; Excavator 1 will excavate and unload, then Dump Truck 1 returns to the starting position to unload.",
"Excavator 1 is guided to the obstacle to excavate and unload to clear the obstacle, then excavator 1 and dump truck 1 are moved to the soil area, and the excavator excavates and unloads. Finally, dump truck 1 unloads the soil into the puddle.",
"Excavator 1 goes to the obstacle to excavate and unload to clear the obstacle. Once the obstacle is cleared, mobilize all available robots to proceed to the puddle area for inspection.",
],
inputs=msg,
label="π‘ Example Operator Commands"
)
# Event handling
msg.submit(
chat_interface,
inputs=[msg, chatbot, max_tokens, model_selector],
outputs=[chatbot, msg]
)
send_btn.click(
chat_interface,
inputs=[msg, chatbot, max_tokens, model_selector],
outputs=[chatbot, msg]
)
clear_btn.click(
lambda: ([], ""),
outputs=[chatbot, msg]
)
# DAG visualization event handlers
dag_btn.click(
create_dag_visualization,
inputs=[json_input],
outputs=[dag_output, dag_status]
)
dag_clear_btn.click(
lambda: ("", None, "Ready to generate DAG visualization"),
outputs=[json_input, dag_output, dag_status]
)
if __name__ == "__main__":
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |