YongdongWang's picture
initial commit
9ffc795
|
raw
history blame
3.53 kB
metadata
title: Robot Task Planning - Llama 3.1 8B
emoji: ๐Ÿค–
colorFrom: blue
colorTo: green
sdk: gradio
app_file: app.py
pinned: false
license: llama3.1

๐Ÿค– Robot Task Planning - Llama 3.1 8B (ZeroGPU)

This Space demonstrates a fine-tuned version of Meta's Llama 3.1 8B model specialized for robot task planning using QLoRA (4-bit quantization + LoRA) technique.

๐Ÿš€ Hardware: ZeroGPU

This Space uses ZeroGPU - dynamic GPU allocation with Nvidia H200:

  • Free for HuggingFace users
  • Dynamic allocation - GPU resources allocated on-demand
  • High performance - H200 offers superior performance
  • 60-second duration per request

๐ŸŽฏ Purpose

Convert natural language commands into structured task sequences for construction robots including:

  • Excavators - Digging, loading, positioning
  • Dump Trucks - Material transport, loading, unloading
  • Multi-robot Coordination - Complex task dependencies

๐Ÿ”— Model

Fine-tuned Model: YongdongWang/llama-3.1-8b-dart-qlora

Base Model: meta-llama/Llama-3.1-8B

โœจ Features

  • ๐ŸŽฎ Interactive Chat Interface - Real-time robot command processing
  • โš™๏ธ Configurable Generation - Adjust temperature, top-p, max tokens
  • ๐Ÿ“ Example Commands - Pre-built scenarios to get started
  • ๐Ÿš€ Optimized Performance - 4-bit quantization for efficient inference
  • ๐Ÿ“Š Structured Output - JSON-formatted task sequences
  • โšก ZeroGPU Powered - Dynamic GPU allocation for free users

๐Ÿš€ Usage

  1. Input: Natural language robot commands

    "Deploy Excavator 1 to Soil Area 1 for excavation"
    
  2. Output: Structured task sequences

    {
      "tasks": [
        {
          "robot": "Excavator_1",
          "action": "move_to",
          "target": "Soil_Area_1",
          "duration": 30
        },
        {
          "robot": "Excavator_1", 
          "action": "excavate",
          "target": "Soil_Area_1",
          "duration": 120
        }
      ]
    }
    

๐Ÿ› ๏ธ Technical Details

  • Architecture: Llama 3.1 8B + QLoRA adapters
  • Quantization: 4-bit (NF4) with double quantization
  • Framework: Transformers + PEFT + BitsAndBytesConfig
  • Hardware: ZeroGPU (Dynamic Nvidia H200)

โšก Performance Notes

  • First Generation: 5-10 seconds (GPU allocation + model loading)
  • Subsequent Generations: 2-5 seconds per response
  • Memory Usage: ~8GB VRAM with 4-bit quantization
  • Context Length: Up to 2048 tokens
  • GPU Duration: 60 seconds per request

๐Ÿ“š Example Commands

Try these robot commands:

  • "Deploy Excavator 1 to Soil Area 1 for excavation"
  • "Send Dump Truck 1 to collect material, then unload at storage"
  • "Coordinate multiple excavators across different areas"
  • "Create evacuation sequence for all robots from dangerous zone"

๐Ÿ”ฌ Research Applications

This model demonstrates:

  • Natural Language โ†’ Robot Planning translation
  • Multi-agent Task Coordination
  • Efficient LLM Fine-tuning with QLoRA
  • Real-time Robot Command Processing
  • ZeroGPU Integration for scalable deployment

๐Ÿ“„ License

This project uses Meta's Llama 3.1 license. Please review the license terms before use.

๐Ÿค Contributing

For issues, improvements, or questions about the model, please visit the model repository.