Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces # Import spaces module for ZeroGPU | |
from huggingface_hub import login | |
import os | |
from json_processor import JsonProcessor | |
from dag_visualizer import DAGVisualizer | |
import json | |
# 1) Read Secrets | |
hf_token = os.getenv("HUGGINGFACE_TOKEN") | |
if not hf_token: | |
raise RuntimeError("β HUGGINGFACE_TOKEN not detected, please check Space Settings β Secrets") | |
# 2) Login to ensure all subsequent from_pretrained calls have proper permissions | |
login(hf_token) | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig | |
from peft import PeftModel | |
import warnings | |
import os | |
warnings.filterwarnings("ignore") | |
# Model configurations | |
MODEL_CONFIGS = { | |
"1B": { | |
"name": "Dart-llm-model-1B", | |
"base_model": "meta-llama/Llama-3.2-1B", | |
"lora_model": "YongdongWang/llama-3.2-1b-lora-qlora-dart-llm" | |
}, | |
"3B": { | |
"name": "Dart-llm-model-3B", | |
"base_model": "meta-llama/Llama-3.2-3B", | |
"lora_model": "YongdongWang/llama-3.2-3b-lora-qlora-dart-llm" | |
}, | |
"8B": { | |
"name": "Dart-llm-model-8B", | |
"base_model": "meta-llama/Llama-3.1-8B", | |
"lora_model": "YongdongWang/llama-3.1-8b-lora-qlora-dart-llm" | |
} | |
} | |
DEFAULT_MODEL = "1B" # Set 1B as default | |
# Global variables to store model and tokenizer | |
model = None | |
tokenizer = None | |
current_model_config = None | |
model_loaded = False | |
def load_model_and_tokenizer(selected_model=DEFAULT_MODEL): | |
"""Load tokenizer - executed on CPU""" | |
global tokenizer, model_loaded, current_model_config | |
if model_loaded and current_model_config == selected_model: | |
return | |
print(f"π Loading tokenizer for {MODEL_CONFIGS[selected_model]['name']}...") | |
# Load tokenizer (on CPU) | |
base_model = MODEL_CONFIGS[selected_model]["base_model"] | |
tokenizer = AutoTokenizer.from_pretrained( | |
base_model, | |
use_fast=False, | |
trust_remote_code=True | |
) | |
if tokenizer.pad_token is None: | |
tokenizer.pad_token = tokenizer.eos_token | |
current_model_config = selected_model | |
model_loaded = True | |
print("β Tokenizer loaded successfully!") | |
# Request GPU for loading model at startup | |
def load_model_on_gpu(selected_model=DEFAULT_MODEL): | |
"""Load model on GPU""" | |
global model | |
# If model is already loaded and it's the same model, return it | |
if model is not None and current_model_config == selected_model: | |
return model | |
# Clear existing model if switching | |
if model is not None: | |
print("ποΈ Clearing existing model from GPU...") | |
del model | |
torch.cuda.empty_cache() | |
model = None | |
model_config = MODEL_CONFIGS[selected_model] | |
print(f"π Loading {model_config['name']} on GPU...") | |
try: | |
# 4-bit quantization configuration | |
bnb_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_quant_type="nf4", | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
) | |
# Load base model | |
base_model = AutoModelForCausalLM.from_pretrained( | |
model_config["base_model"], | |
quantization_config=bnb_config, | |
device_map="auto", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
low_cpu_mem_usage=True, | |
use_safetensors=True | |
) | |
# Load LoRA adapter | |
model = PeftModel.from_pretrained( | |
base_model, | |
model_config["lora_model"], | |
torch_dtype=torch.float16, | |
use_safetensors=True | |
) | |
model.eval() | |
print(f"β {model_config['name']} loaded on GPU successfully!") | |
return model | |
except Exception as load_error: | |
print(f"β Model loading failed: {load_error}") | |
raise load_error | |
def process_json_in_response(response): | |
"""Process and format JSON content in the response""" | |
try: | |
# Check if response contains JSON-like content | |
if '{' in response and '}' in response: | |
processor = JsonProcessor() | |
# Try to process the response for JSON content | |
processed_json = processor.process_response(response) | |
if processed_json: | |
# Format the JSON nicely | |
formatted_json = json.dumps(processed_json, indent=2, ensure_ascii=False) | |
# Replace the JSON part in the response | |
import re | |
json_pattern = r'\{.*\}' | |
match = re.search(json_pattern, response, re.DOTALL) | |
if match: | |
# Replace the matched JSON with the formatted version | |
response = response.replace(match.group(), formatted_json) | |
return response | |
except Exception: | |
# If processing fails, return original response | |
return response | |
# GPU inference | |
def generate_response_gpu(prompt, max_tokens=512, selected_model=DEFAULT_MODEL): | |
"""Generate response - executed on GPU""" | |
global model | |
# Ensure tokenizer is loaded | |
if tokenizer is None or current_model_config != selected_model: | |
load_model_and_tokenizer(selected_model) | |
# Ensure model is loaded on GPU | |
if model is None or current_model_config != selected_model: | |
model = load_model_on_gpu(selected_model) | |
if model is None: | |
return "β Model failed to load. Please check the Space logs." | |
try: | |
formatted_prompt = ( | |
"### Instruction:\n" | |
f"{prompt.strip()}\n\n" | |
"### Response:\n" | |
) | |
# Encode input | |
inputs = tokenizer( | |
formatted_prompt, | |
return_tensors="pt", | |
truncation=True, | |
max_length=2048 | |
).to(model.device) | |
# Generate response | |
with torch.no_grad(): | |
outputs = model.generate( | |
**inputs, | |
max_new_tokens=max_tokens, | |
do_sample=False, | |
temperature=None, | |
top_p=None, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
repetition_penalty=1.1, | |
early_stopping=True, | |
no_repeat_ngram_size=3 | |
) | |
# Decode output | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Extract generated part | |
if "### Response:" in response: | |
response = response.split("### Response:")[-1].strip() | |
elif len(response) > len(formatted_prompt): | |
response = response[len(formatted_prompt):].strip() | |
# Process JSON if present in response | |
response = process_json_in_response(response) | |
return response if response else "β No response generated. Please try again with a different prompt." | |
except Exception as generation_error: | |
return f"β Generation Error: {str(generation_error)}" | |
def create_dag_visualization(task_json_str): | |
"""Create DAG visualization from task JSON""" | |
try: | |
if not task_json_str.strip(): | |
return None, "Please provide task JSON data" | |
# Parse JSON | |
task_data = json.loads(task_json_str) | |
# Create DAG visualizer | |
dag_visualizer = DAGVisualizer() | |
# Generate visualization | |
image_path = dag_visualizer.create_dag_visualization(task_data) | |
if image_path: | |
return image_path, "β DAG visualization created successfully!" | |
else: | |
return None, "β Failed to create DAG visualization" | |
except json.JSONDecodeError as e: | |
return None, f"β JSON Parse Error: {str(e)}" | |
except Exception as e: | |
return None, f"β DAG Creation Error: {str(e)}" | |
def chat_interface(message, history, max_tokens, selected_model): | |
"""Chat interface - runs on CPU, calls GPU functions""" | |
if not message.strip(): | |
return history, "" | |
# Initialize tokenizer (if needed) | |
if tokenizer is None or current_model_config != selected_model: | |
load_model_and_tokenizer(selected_model) | |
try: | |
# Call GPU function to generate response | |
response = generate_response_gpu(message, max_tokens, selected_model) | |
history.append((message, response)) | |
return history, "" | |
except Exception as chat_error: | |
error_msg = f"β Chat Error: {str(chat_error)}" | |
history.append((message, error_msg)) | |
return history, "" | |
# Load tokenizer at startup with default model | |
load_model_and_tokenizer(DEFAULT_MODEL) | |
# Create Gradio application | |
with gr.Blocks( | |
title="Robot Task Planning - DART-LLM Multi-Model", | |
theme=gr.themes.Soft(), | |
css=""" | |
.gradio-container { | |
max-width: 1200px; | |
margin: auto; | |
} | |
""" | |
) as app: | |
gr.Markdown(""" | |
# π€ DART-LLM Multi-Model - Robot Task Planning | |
Choose from **three fine-tuned models** specialized for **robot task planning** using QLoRA technique: | |
- **π Dart-llm-model-1B**: Ready for Jetson Nano deployment (870MB GGUF) | |
- **βοΈ Dart-llm-model-3B**: Ready for Jetson Xavier NX deployment (1.9GB GGUF) | |
- **π― Dart-llm-model-8B**: Ready for Jetson AGX Xavier/Orin deployment (4.6GB GGUF) | |
**Capabilities**: Convert natural language robot commands into structured task sequences for excavators, dump trucks, and other construction robots. **Edge-ready for Jetson devices with DAG Visualization!** | |
## π§ Recommended for Jetson Deployment (GGUF Models) | |
For optimal edge deployment performance, use these GGUF quantized models: | |
- **[YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-1b-lora-qlora-dart-llm-gguf)** (870MB) - Jetson Nano/Orin Nano | |
- **[YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.2-3b-lora-qlora-dart-llm-gguf)** (1.9GB) - Jetson Orin NX/AGX Orin | |
- **[YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf](https://huggingface.co/YongdongWang/llama-3.1-8b-lora-qlora-dart-llm-gguf)** (4.6GB) - High-end Jetson AGX Orin | |
π‘ **Deploy with**: Ollama, llama.cpp, or llama-cpp-python for efficient edge inference | |
""") | |
with gr.Tabs(): | |
with gr.Tab("π¬ Task Planning"): | |
with gr.Row(): | |
with gr.Column(scale=3): | |
chatbot = gr.Chatbot( | |
label="Task Planning Results", | |
height=500, | |
show_label=True, | |
container=True, | |
bubble_full_width=False, | |
show_copy_button=True | |
) | |
msg = gr.Textbox( | |
label="Robot Command", | |
placeholder="Enter robot task command (e.g., 'Deploy Excavator 1 to Soil Area 1')...", | |
lines=2, | |
max_lines=5, | |
show_label=True, | |
container=True | |
) | |
with gr.Row(): | |
send_btn = gr.Button("π Generate Tasks", variant="primary", size="sm") | |
clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm") | |
with gr.Column(scale=1): | |
gr.Markdown("### βοΈ Generation Settings") | |
model_selector = gr.Dropdown( | |
choices=[(config["name"], key) for key, config in MODEL_CONFIGS.items()], | |
value=DEFAULT_MODEL, | |
label="Model Size", | |
info="Select model for your Jetson device (1B = Nano, 3B = Xavier NX, 8B = AGX)", | |
interactive=True | |
) | |
max_tokens = gr.Slider( | |
minimum=50, | |
maximum=5000, | |
value=512, | |
step=10, | |
label="Max Tokens", | |
info="Maximum number of tokens to generate" | |
) | |
gr.Markdown(""" | |
### π§ GGUF Models for Jetson Deployment | |
**Recommended for edge deployment:** | |
- **1B (870MB)**: Jetson Nano/Orin Nano (2GB RAM) | |
- **3B (1.9GB)**: Jetson Orin NX/AGX Orin (4GB RAM) | |
- **8B (4.6GB)**: High-end Jetson AGX Orin (8GB RAM) | |
π‘ Use **Ollama** or **llama.cpp** for efficient inference | |
""") | |
with gr.Tab("π DAG Visualization"): | |
with gr.Row(): | |
with gr.Column(scale=2): | |
json_input = gr.Textbox( | |
label="Task JSON Data", | |
placeholder="Paste the generated task JSON here to create a DAG visualization...", | |
lines=15, | |
max_lines=25, | |
show_label=True, | |
container=True | |
) | |
with gr.Row(): | |
dag_btn = gr.Button("π¨ Generate DAG", variant="primary", size="sm") | |
dag_clear_btn = gr.Button("ποΈ Clear", variant="secondary", size="sm") | |
dag_status = gr.Textbox( | |
label="Status", | |
value="Ready to generate DAG visualization", | |
interactive=False, | |
show_label=True | |
) | |
with gr.Column(scale=3): | |
dag_output = gr.Image( | |
label="Task Dependency Graph", | |
show_label=True, | |
container=True, | |
height=600 | |
) | |
gr.Markdown(""" | |
### π DAG Features | |
- **Node Colors**: Red (Start), Orange (Intermediate), Purple (End) | |
- **Arrows**: Show task dependencies | |
- **Layout**: Hierarchical based on dependencies | |
- **Details**: Task info boxes with robots and objects | |
""") | |
# Example conversations | |
gr.Examples( | |
examples=[ | |
"Dump truck 1 goes to the puddle for inspection, after which all robots avoid the puddle.", | |
"Drive the Excavator 1 to the obstacle, and perform excavation to clear the obstacle.", | |
"Send Excavator 1 and Dump Truck 1 to the soil area; Excavator 1 will excavate and unload, followed by Dump Truck 1 proceeding to the puddle for unloading.", | |
"Move Excavator 1 and Dump Truck 1 to soil area 2; Excavator 1 will excavate and unload, then Dump Truck 1 returns to the starting position to unload.", | |
"Excavator 1 is guided to the obstacle to excavate and unload to clear the obstacle, then excavator 1 and dump truck 1 are moved to the soil area, and the excavator excavates and unloads. Finally, dump truck 1 unloads the soil into the puddle.", | |
"Excavator 1 goes to the obstacle to excavate and unload to clear the obstacle. Once the obstacle is cleared, mobilize all available robots to proceed to the puddle area for inspection.", | |
], | |
inputs=msg, | |
label="π‘ Example Operator Commands" | |
) | |
# Event handling | |
msg.submit( | |
chat_interface, | |
inputs=[msg, chatbot, max_tokens, model_selector], | |
outputs=[chatbot, msg] | |
) | |
send_btn.click( | |
chat_interface, | |
inputs=[msg, chatbot, max_tokens, model_selector], | |
outputs=[chatbot, msg] | |
) | |
clear_btn.click( | |
lambda: ([], ""), | |
outputs=[chatbot, msg] | |
) | |
# DAG visualization event handlers | |
dag_btn.click( | |
create_dag_visualization, | |
inputs=[json_input], | |
outputs=[dag_output, dag_status] | |
) | |
dag_clear_btn.click( | |
lambda: ("", None, "Ready to generate DAG visualization"), | |
outputs=[json_input, dag_output, dag_status] | |
) | |
if __name__ == "__main__": | |
app.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=True, | |
show_error=True | |
) |