Spaces:
Runtime error
Runtime error
title: Robot Task Planning - Llama 3.1 8B | |
emoji: ๐ค | |
colorFrom: blue | |
colorTo: green | |
sdk: gradio | |
sdk_version: 4.32.2 | |
app_file: app.py | |
pinned: false | |
license: llama3.1 | |
hardware: t4-medium | |
# ๐ค Robot Task Planning - Llama 3.1 8B | |
This Space demonstrates a fine-tuned version of Meta's **Llama 3.1 8B** model specialized for **robot task planning** using QLoRA (4-bit quantization + LoRA) technique. | |
## ๐ฏ Purpose | |
Convert natural language commands into structured task sequences for construction robots including: | |
- **Excavators** - Digging, loading, positioning | |
- **Dump Trucks** - Material transport, loading, unloading | |
- **Multi-robot Coordination** - Complex task dependencies | |
## ๐ Model | |
**Fine-tuned Model**: [YongdongWang/llama-3.1-8b-dart-qlora](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora) | |
**Base Model**: [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) | |
## โจ Features | |
- ๐ฎ **Interactive Chat Interface** - Real-time robot command processing | |
- โ๏ธ **Configurable Generation** - Adjust temperature, top-p, max tokens | |
- ๐ **Example Commands** - Pre-built scenarios to get started | |
- ๐ **Optimized Performance** - 4-bit quantization for efficient inference | |
- ๐ **Structured Output** - JSON-formatted task sequences | |
## ๐ Usage | |
1. **Input**: Natural language robot commands | |
``` | |
"Deploy Excavator 1 to Soil Area 1 for excavation" | |
``` | |
2. **Output**: Structured task sequences | |
```json | |
{ | |
"tasks": [ | |
{ | |
"robot": "Excavator_1", | |
"action": "move_to", | |
"target": "Soil_Area_1", | |
"duration": 30 | |
}, | |
{ | |
"robot": "Excavator_1", | |
"action": "excavate", | |
"target": "Soil_Area_1", | |
"duration": 120 | |
} | |
] | |
} | |
``` | |
## ๐ ๏ธ Technical Details | |
- **Architecture**: Llama 3.1 8B + QLoRA adapters | |
- **Quantization**: 4-bit (NF4) with double quantization | |
- **Framework**: Transformers + PEFT + BitsAndBytesConfig | |
- **Interface**: Gradio 4.32.2 (stable version) | |
- **Hardware**: T4-MEDIUM (16GB VRAM) | |
## โก Performance Notes | |
- **First Load**: 3-5 minutes (model downloading + loading) | |
- **Subsequent Generations**: ~2-10 seconds per response | |
- **Memory Usage**: ~8GB VRAM with 4-bit quantization | |
- **Context Length**: Up to 2048 tokens | |
## ๐ Example Commands | |
Try these robot commands: | |
- `"Deploy Excavator 1 to Soil Area 1 for excavation"` | |
- `"Send Dump Truck 1 to collect material, then unload at storage"` | |
- `"Coordinate multiple excavators across different areas"` | |
- `"Create evacuation sequence for all robots from dangerous zone"` | |
## ๐ฌ Research Applications | |
This model demonstrates: | |
- **Natural Language โ Robot Planning** translation | |
- **Multi-agent Task Coordination** | |
- **Efficient LLM Fine-tuning** with QLoRA | |
- **Real-time Robot Command Processing** | |
## ๐ License | |
This project uses Meta's Llama 3.1 license. Please review the license terms before use. | |
## ๐ค Contributing | |
For issues, improvements, or questions about the model, please visit the [model repository](https://huggingface.co/YongdongWang/llama-3.1-8b-dart-qlora). | |