adityamanwatkar commited on
Commit
ae70fe4
·
verified ·
1 Parent(s): bfd3275

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +53 -0
  2. keras_model.h5 +3 -0
  3. labels.txt +5 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from tensorflow.keras.models import load_model
3
+ from tensorflow.keras.layers import DepthwiseConv2D
4
+ from PIL import Image, ImageOps
5
+ import numpy as np
6
+
7
+ # Optional: Patch DepthwiseConv2D if needed
8
+ class PatchedDepthwiseConv2D(DepthwiseConv2D):
9
+ def __init__(self, *args, groups=1, **kwargs):
10
+ super().__init__(*args, **kwargs)
11
+
12
+ # Load model
13
+ model = load_model(r"D:\garbage\keras_model.h5", compile=False, custom_objects={"DepthwiseConv2D": PatchedDepthwiseConv2D})
14
+
15
+ # Load class labels
16
+ with open(r"D:\garbage\labels.txt", "r") as f:
17
+ class_names = f.readlines()
18
+
19
+ st.title("♻️ Garbage Classification Predictor")
20
+
21
+ # Upload image
22
+ uploaded_file = st.file_uploader("Upload a waste image (jpg, png)", type=["jpg", "jpeg", "png"])
23
+
24
+ if st.button("🧪 Predict Waste Type"):
25
+ if uploaded_file is not None:
26
+ image = Image.open(uploaded_file)
27
+ st.image(image, use_container_width=True)
28
+
29
+
30
+ # Preprocess image
31
+ image = image.convert("RGB")
32
+ image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
33
+ image_array = np.asarray(image)
34
+ normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
35
+ data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
36
+ data[0] = normalized_image_array
37
+
38
+ # Make prediction
39
+ prediction = model.predict(data)
40
+ index = np.argmax(prediction)
41
+ predicted_label = class_names[index].strip()
42
+ confidence = prediction[0][index]
43
+
44
+ # Display result
45
+ st.success(f"Predicted Waste Type: **{predicted_label.upper()}**")
46
+ st.write(f"Confidence Score: **{confidence:.2f}**")
47
+ st.write("♻️ Dispose responsibly!")
48
+ else:
49
+ st.warning("⚠️ Please upload an image before predicting.")
50
+ # 🔚 Footer
51
+ st.markdown("---")
52
+ st.markdown("<p style='text-align: center; font-size: 18px;'>Developed with ❤️ By Twinkle Ghangare for EDUNET FOUNDATION </p>", unsafe_allow_html=True)
53
+
keras_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d80bf760a260153e1aa76937e4f82183f188a43c703abd09463e59087b1e7883
3
+ size 2456608
labels.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ 0 PLASTICS
2
+ 1 GLASS
3
+ 2 PAPER
4
+ 3 METAL
5
+ 4 CARDBOARD