Spaces:
No application file
No application file
Upload 3 files
Browse files- app.py +53 -0
- keras_model.h5 +3 -0
- labels.txt +5 -0
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from tensorflow.keras.models import load_model
|
3 |
+
from tensorflow.keras.layers import DepthwiseConv2D
|
4 |
+
from PIL import Image, ImageOps
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
# Optional: Patch DepthwiseConv2D if needed
|
8 |
+
class PatchedDepthwiseConv2D(DepthwiseConv2D):
|
9 |
+
def __init__(self, *args, groups=1, **kwargs):
|
10 |
+
super().__init__(*args, **kwargs)
|
11 |
+
|
12 |
+
# Load model
|
13 |
+
model = load_model(r"D:\garbage\keras_model.h5", compile=False, custom_objects={"DepthwiseConv2D": PatchedDepthwiseConv2D})
|
14 |
+
|
15 |
+
# Load class labels
|
16 |
+
with open(r"D:\garbage\labels.txt", "r") as f:
|
17 |
+
class_names = f.readlines()
|
18 |
+
|
19 |
+
st.title("♻️ Garbage Classification Predictor")
|
20 |
+
|
21 |
+
# Upload image
|
22 |
+
uploaded_file = st.file_uploader("Upload a waste image (jpg, png)", type=["jpg", "jpeg", "png"])
|
23 |
+
|
24 |
+
if st.button("🧪 Predict Waste Type"):
|
25 |
+
if uploaded_file is not None:
|
26 |
+
image = Image.open(uploaded_file)
|
27 |
+
st.image(image, use_container_width=True)
|
28 |
+
|
29 |
+
|
30 |
+
# Preprocess image
|
31 |
+
image = image.convert("RGB")
|
32 |
+
image = ImageOps.fit(image, (224, 224), Image.Resampling.LANCZOS)
|
33 |
+
image_array = np.asarray(image)
|
34 |
+
normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1
|
35 |
+
data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32)
|
36 |
+
data[0] = normalized_image_array
|
37 |
+
|
38 |
+
# Make prediction
|
39 |
+
prediction = model.predict(data)
|
40 |
+
index = np.argmax(prediction)
|
41 |
+
predicted_label = class_names[index].strip()
|
42 |
+
confidence = prediction[0][index]
|
43 |
+
|
44 |
+
# Display result
|
45 |
+
st.success(f"Predicted Waste Type: **{predicted_label.upper()}**")
|
46 |
+
st.write(f"Confidence Score: **{confidence:.2f}**")
|
47 |
+
st.write("♻️ Dispose responsibly!")
|
48 |
+
else:
|
49 |
+
st.warning("⚠️ Please upload an image before predicting.")
|
50 |
+
# 🔚 Footer
|
51 |
+
st.markdown("---")
|
52 |
+
st.markdown("<p style='text-align: center; font-size: 18px;'>Developed with ❤️ By Twinkle Ghangare for EDUNET FOUNDATION </p>", unsafe_allow_html=True)
|
53 |
+
|
keras_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d80bf760a260153e1aa76937e4f82183f188a43c703abd09463e59087b1e7883
|
3 |
+
size 2456608
|
labels.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
0 PLASTICS
|
2 |
+
1 GLASS
|
3 |
+
2 PAPER
|
4 |
+
3 METAL
|
5 |
+
4 CARDBOARD
|