update app.py
#242
by
dar3512
- opened
app.py
CHANGED
@@ -1,103 +1,183 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
-
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
# (Keep Constants as is)
|
8 |
# --- Constants ---
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
# ---
|
12 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
13 |
class BasicAgent:
|
14 |
-
def __init__(self):
|
15 |
-
print("BasicAgent initialized.")
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
def
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
|
|
30 |
if profile:
|
31 |
-
username=
|
32 |
print(f"User logged in: {username}")
|
33 |
else:
|
34 |
-
print("User not logged in.")
|
35 |
return "Please Login to Hugging Face with the button.", None
|
36 |
-
|
37 |
api_url = DEFAULT_API_URL
|
38 |
questions_url = f"{api_url}/questions"
|
39 |
submit_url = f"{api_url}/submit"
|
40 |
-
|
41 |
-
# 1. Instantiate Agent ( modify this part to create your agent)
|
42 |
try:
|
43 |
-
agent = BasicAgent()
|
44 |
except Exception as e:
|
45 |
-
print(f"Error instantiating agent: {e}")
|
46 |
return f"Error initializing agent: {e}", None
|
47 |
-
|
48 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
49 |
print(agent_code)
|
50 |
-
|
51 |
-
# 2. Fetch Questions
|
52 |
-
print(f"Fetching questions from: {questions_url}")
|
53 |
try:
|
54 |
response = requests.get(questions_url, timeout=15)
|
55 |
response.raise_for_status()
|
56 |
questions_data = response.json()
|
57 |
-
if not questions_data:
|
58 |
-
print("Fetched questions list is empty.")
|
59 |
-
return "Fetched questions list is empty or invalid format.", None
|
60 |
print(f"Fetched {len(questions_data)} questions.")
|
61 |
-
except requests.exceptions.RequestException as e:
|
62 |
-
print(f"Error fetching questions: {e}")
|
63 |
-
return f"Error fetching questions: {e}", None
|
64 |
-
except requests.exceptions.JSONDecodeError as e:
|
65 |
-
print(f"Error decoding JSON response from questions endpoint: {e}")
|
66 |
-
print(f"Response text: {response.text[:500]}")
|
67 |
-
return f"Error decoding server response for questions: {e}", None
|
68 |
except Exception as e:
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
# 3. Run your Agent
|
73 |
results_log = []
|
74 |
answers_payload = []
|
75 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
76 |
for item in questions_data:
|
77 |
task_id = item.get("task_id")
|
78 |
question_text = item.get("question")
|
79 |
-
|
80 |
-
|
81 |
continue
|
82 |
try:
|
83 |
-
submitted_answer = agent(question_text)
|
84 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
85 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
86 |
except Exception as e:
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
if not answers_payload:
|
91 |
-
print("Agent did not produce any answers to submit.")
|
92 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
93 |
-
|
94 |
-
# 4. Prepare Submission
|
95 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
96 |
-
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
|
97 |
-
print(status_update)
|
98 |
-
|
99 |
-
# 5. Submit
|
100 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
101 |
try:
|
102 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
103 |
response.raise_for_status()
|
@@ -109,88 +189,27 @@ def run_and_submit_all( profile: gr.OAuthProfile | None):
|
|
109 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
110 |
f"Message: {result_data.get('message', 'No message received.')}"
|
111 |
)
|
112 |
-
|
113 |
-
results_df = pd.DataFrame(results_log)
|
114 |
-
return final_status, results_df
|
115 |
-
except requests.exceptions.HTTPError as e:
|
116 |
-
error_detail = f"Server responded with status {e.response.status_code}."
|
117 |
-
try:
|
118 |
-
error_json = e.response.json()
|
119 |
-
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
|
120 |
-
except requests.exceptions.JSONDecodeError:
|
121 |
-
error_detail += f" Response: {e.response.text[:500]}"
|
122 |
-
status_message = f"Submission Failed: {error_detail}"
|
123 |
-
print(status_message)
|
124 |
-
results_df = pd.DataFrame(results_log)
|
125 |
-
return status_message, results_df
|
126 |
-
except requests.exceptions.Timeout:
|
127 |
-
status_message = "Submission Failed: The request timed out."
|
128 |
-
print(status_message)
|
129 |
-
results_df = pd.DataFrame(results_log)
|
130 |
-
return status_message, results_df
|
131 |
-
except requests.exceptions.RequestException as e:
|
132 |
-
status_message = f"Submission Failed: Network error - {e}"
|
133 |
-
print(status_message)
|
134 |
-
results_df = pd.DataFrame(results_log)
|
135 |
-
return status_message, results_df
|
136 |
except Exception as e:
|
137 |
-
|
138 |
-
print(status_message)
|
139 |
-
results_df = pd.DataFrame(results_log)
|
140 |
-
return status_message, results_df
|
141 |
|
142 |
-
|
143 |
-
# --- Build Gradio Interface using Blocks ---
|
144 |
with gr.Blocks() as demo:
|
145 |
-
gr.Markdown("#
|
146 |
gr.Markdown(
|
147 |
"""
|
148 |
**Instructions:**
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
---
|
155 |
-
**Disclaimers:**
|
156 |
-
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
|
157 |
-
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
|
158 |
"""
|
159 |
)
|
160 |
-
|
161 |
gr.LoginButton()
|
162 |
-
|
163 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
164 |
-
|
165 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
166 |
-
# Removed max_rows=10 from DataFrame constructor
|
167 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
168 |
-
|
169 |
-
run_button.click(
|
170 |
-
fn=run_and_submit_all,
|
171 |
-
outputs=[status_output, results_table]
|
172 |
-
)
|
173 |
|
174 |
if __name__ == "__main__":
|
175 |
-
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
176 |
-
# Check for SPACE_HOST and SPACE_ID at startup for information
|
177 |
-
space_host_startup = os.getenv("SPACE_HOST")
|
178 |
-
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
|
179 |
-
|
180 |
-
if space_host_startup:
|
181 |
-
print(f"β
SPACE_HOST found: {space_host_startup}")
|
182 |
-
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
183 |
-
else:
|
184 |
-
print("βΉοΈ SPACE_HOST environment variable not found (running locally?).")
|
185 |
-
|
186 |
-
if space_id_startup: # Print repo URLs if SPACE_ID is found
|
187 |
-
print(f"β
SPACE_ID found: {space_id_startup}")
|
188 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
189 |
-
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
190 |
-
else:
|
191 |
-
print("βΉοΈ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
192 |
-
|
193 |
-
print("-"*(60 + len(" App Starting ")) + "\n")
|
194 |
-
|
195 |
-
print("Launching Gradio Interface for Basic Agent Evaluation...")
|
196 |
demo.launch(debug=True, share=False)
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
import requests
|
|
|
4 |
import pandas as pd
|
5 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
6 |
+
from langchain_huggingface import HuggingFaceHub # For free HF models
|
7 |
+
from langchain_core.prompts import PromptTemplate
|
8 |
+
from langchain_community.tools import DuckDuckGoSearchRun
|
9 |
+
from langchain.tools import Tool
|
10 |
+
from langchain_community.tools import PythonREPLTool
|
11 |
+
import tempfile
|
12 |
+
import base64
|
13 |
+
from huggingface_hub import InferenceClient # For vision and text
|
14 |
+
|
15 |
+
# For PDF and Excel handling
|
16 |
+
try:
|
17 |
+
from langchain_community.document_loaders import PyPDFLoader
|
18 |
+
import openpyxl
|
19 |
+
except ImportError:
|
20 |
+
pass
|
21 |
|
|
|
22 |
# --- Constants ---
|
23 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
24 |
|
25 |
+
# --- Advanced Agent Definition (No API Key Required) ---
|
|
|
26 |
class BasicAgent:
|
27 |
+
def __init__(self, api_url):
|
28 |
+
print("Advanced BasicAgent initialized with free HF models (no API key).")
|
29 |
+
|
30 |
+
# Free HF model for text reasoning (Mistral-7B-Instruct)
|
31 |
+
self.llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-Instruct-v0.2", model_kwargs={"temperature": 0.1, "max_new_tokens": 500})
|
32 |
+
|
33 |
+
# Free HF Inference Client for vision (e.g., Salesforce/blip-image-captioning-large)
|
34 |
+
self.vision_client = InferenceClient(model="Salesforce/blip-image-captioning-large")
|
35 |
+
|
36 |
+
# Tools for web search, code execution, and file processing
|
37 |
+
self.search_tool = DuckDuckGoSearchRun(name="web_search", description="Search the web for information.")
|
38 |
+
self.python_tool = PythonREPLTool(description="Execute Python code for calculations or data processing. Input should be valid Python code.")
|
39 |
+
|
40 |
+
# Custom tool for processing files (downloads from API, handles images/PDFs/Excel/text)
|
41 |
+
self.file_tool = Tool(
|
42 |
+
name="process_file",
|
43 |
+
func=self._process_file,
|
44 |
+
description="Download and process a file associated with a task. Input format: 'task_id: <id>, file_name: <name>'"
|
45 |
+
)
|
46 |
+
|
47 |
+
self.tools = [self.search_tool, self.python_tool, self.file_tool]
|
48 |
+
|
49 |
+
# React agent prompt template (inspired by GAIA prompting for exact answers)
|
50 |
+
self.prompt_template = PromptTemplate.from_template("""
|
51 |
+
You are an expert AI agent solving GAIA benchmark questions. These questions require reasoning, tool use, and sometimes file processing.
|
52 |
+
|
53 |
+
Question: {question}
|
54 |
+
|
55 |
+
If the question mentions a file or attachment, use the 'process_file' tool with 'task_id: {task_id}, file_name: {file_name}'.
|
56 |
+
|
57 |
+
Reason step-by-step using tools as needed. Output ONLY the final answer in the exact format required by the question. No explanations, no extra text.
|
58 |
+
|
59 |
+
{agent_scratchpad}
|
60 |
+
""")
|
61 |
+
|
62 |
+
self.agent = create_react_agent(self.llm, self.tools, self.prompt_template)
|
63 |
+
self.executor = AgentExecutor(agent=self.agent, tools=self.tools, verbose=True, handle_parsing_errors=True, max_iterations=10)
|
64 |
+
|
65 |
+
self.api_url = api_url
|
66 |
|
67 |
+
def _process_file(self, input_str: str) -> str:
|
68 |
+
"""Internal function to download and process files without keys."""
|
69 |
+
try:
|
70 |
+
# Parse input
|
71 |
+
parts = dict(part.strip().split(': ', 1) for part in input_str.split(', '))
|
72 |
+
task_id = parts.get('task_id')
|
73 |
+
file_name = parts.get('file_name')
|
74 |
+
if not task_id or not file_name:
|
75 |
+
return "Invalid input for process_file. Need 'task_id' and 'file_name'."
|
76 |
+
|
77 |
+
# Download file
|
78 |
+
file_url = f"{self.api_url}/files/{task_id}"
|
79 |
+
response = requests.get(file_url, timeout=10)
|
80 |
+
response.raise_for_status()
|
81 |
+
|
82 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(file_name)[1]) as tmp:
|
83 |
+
tmp.write(response.content)
|
84 |
+
file_path = tmp.name
|
85 |
+
|
86 |
+
ext = os.path.splitext(file_name)[1].lower()
|
87 |
+
|
88 |
+
if ext in ['.jpg', '.png', '.jpeg', '.gif']:
|
89 |
+
# Use free HF vision model to describe image
|
90 |
+
with open(file_path, "rb") as img_file:
|
91 |
+
description = self.vision_client.image_to_text(image=img_file)
|
92 |
+
os.unlink(file_path)
|
93 |
+
return description
|
94 |
+
|
95 |
+
elif ext == '.pdf':
|
96 |
+
loader = PyPDFLoader(file_path)
|
97 |
+
docs = loader.load()
|
98 |
+
text = "\n\n".join(doc.page_content for doc in docs)
|
99 |
+
os.unlink(file_path)
|
100 |
+
return text[:20000] # Truncate if too long
|
101 |
+
|
102 |
+
elif ext in ['.xlsx', '.xls']:
|
103 |
+
import pandas as pd
|
104 |
+
df = pd.read_excel(file_path)
|
105 |
+
os.unlink(file_path)
|
106 |
+
return df.to_string()
|
107 |
+
|
108 |
+
else:
|
109 |
+
# Text file
|
110 |
+
with open(file_path, 'r', encoding='utf-8', errors='ignore') as f:
|
111 |
+
text = f.read()
|
112 |
+
os.unlink(file_path)
|
113 |
+
return text[:20000]
|
114 |
+
|
115 |
+
except Exception as e:
|
116 |
+
return f"Error processing file: {str(e)}"
|
117 |
+
|
118 |
+
def __call__(self, question: str, task_id: str, file_name: str | None = None) -> str:
|
119 |
+
print(f"Agent processing question (first 50 chars): {question[:50]}... (task_id: {task_id}, file: {file_name})")
|
120 |
+
input_prompt = question
|
121 |
+
if file_name:
|
122 |
+
input_prompt += f"\nThere is an attached file '{file_name}'. Use the 'process_file' tool with 'task_id: {task_id}, file_name: {file_name}' to access it."
|
123 |
+
|
124 |
+
try:
|
125 |
+
response = self.executor.invoke({"question": input_prompt})
|
126 |
+
answer = response['output'].strip()
|
127 |
+
print(f"Agent returning answer: {answer}")
|
128 |
+
return answer
|
129 |
+
except Exception as e:
|
130 |
+
print(f"Error generating answer: {e}")
|
131 |
+
return "Agent error occurred."
|
132 |
|
133 |
+
# Update the run_and_submit_all to pass task_id and file_name to agent
|
134 |
+
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
135 |
+
space_id = os.getenv("SPACE_ID")
|
136 |
if profile:
|
137 |
+
username = profile.username
|
138 |
print(f"User logged in: {username}")
|
139 |
else:
|
|
|
140 |
return "Please Login to Hugging Face with the button.", None
|
141 |
+
|
142 |
api_url = DEFAULT_API_URL
|
143 |
questions_url = f"{api_url}/questions"
|
144 |
submit_url = f"{api_url}/submit"
|
145 |
+
|
|
|
146 |
try:
|
147 |
+
agent = BasicAgent(api_url)
|
148 |
except Exception as e:
|
|
|
149 |
return f"Error initializing agent: {e}", None
|
150 |
+
|
151 |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
152 |
print(agent_code)
|
153 |
+
|
|
|
|
|
154 |
try:
|
155 |
response = requests.get(questions_url, timeout=15)
|
156 |
response.raise_for_status()
|
157 |
questions_data = response.json()
|
|
|
|
|
|
|
158 |
print(f"Fetched {len(questions_data)} questions.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
except Exception as e:
|
160 |
+
return f"Error fetching questions: {e}", None
|
161 |
+
|
|
|
|
|
162 |
results_log = []
|
163 |
answers_payload = []
|
|
|
164 |
for item in questions_data:
|
165 |
task_id = item.get("task_id")
|
166 |
question_text = item.get("question")
|
167 |
+
file_name = item.get("file_name") # Adjust based on API response; assume it provides 'file_name' if attached
|
168 |
+
if not task_id or not question_text:
|
169 |
continue
|
170 |
try:
|
171 |
+
submitted_answer = agent(question_text, task_id, file_name)
|
172 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
173 |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
174 |
except Exception as e:
|
175 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
176 |
+
|
|
|
177 |
if not answers_payload:
|
|
|
178 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
179 |
+
|
|
|
180 |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
181 |
try:
|
182 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
183 |
response.raise_for_status()
|
|
|
189 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
190 |
f"Message: {result_data.get('message', 'No message received.')}"
|
191 |
)
|
192 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
except Exception as e:
|
194 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
195 |
|
196 |
+
# --- Gradio Interface ---
|
|
|
197 |
with gr.Blocks() as demo:
|
198 |
+
gr.Markdown("# Advanced Agent Evaluation Runner for GAIA (No API Key Required)")
|
199 |
gr.Markdown(
|
200 |
"""
|
201 |
**Instructions:**
|
202 |
+
1. Log in to Hugging Face.
|
203 |
+
2. Click 'Run Evaluation & Submit All Answers'.
|
204 |
+
|
205 |
+
This agent uses free Hugging Face models (Mistral for text, BLIP for vision) with tools for search, code, and files to aim for 30-50%+ scores without any API keys.
|
|
|
|
|
|
|
|
|
|
|
206 |
"""
|
207 |
)
|
|
|
208 |
gr.LoginButton()
|
|
|
209 |
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
|
|
210 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
|
|
211 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
212 |
+
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table])
|
|
|
|
|
|
|
|
|
213 |
|
214 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
demo.launch(debug=True, share=False)
|