|
import gradio as gr
|
|
import pandas as pd
|
|
import os
|
|
import matplotlib.pyplot as plt
|
|
import io
|
|
from PIL import Image
|
|
import base64
|
|
import re
|
|
import numpy as np
|
|
from llama_index.llms.groq import Groq
|
|
from llama_index.core.query_pipeline import (
|
|
QueryPipeline as QP,
|
|
Link,
|
|
InputComponent,
|
|
)
|
|
from llama_index.experimental.query_engine.pandas import (
|
|
PandasInstructionParser,
|
|
)
|
|
from llama_index.core import PromptTemplate
|
|
|
|
|
|
EXAMPLE_DATASETS = {
|
|
"Hotel Bookings": "hotel_bookings.csv",
|
|
}
|
|
|
|
def load_dataframe(file_path):
|
|
try:
|
|
if isinstance(file_path, str):
|
|
|
|
df = pd.read_csv(file_path)
|
|
else:
|
|
|
|
df = pd.read_csv(file_path.name)
|
|
return df, f"Successfully loaded dataset with {df.shape[0]} rows and {df.shape[1]} columns."
|
|
except Exception as e:
|
|
return None, f"Error loading dataset: {str(e)}"
|
|
|
|
def create_query_pipeline(df, api_key, model="llama-3.3-70b-versatile"):
|
|
|
|
try:
|
|
llm = Groq(model=model, api_key=api_key)
|
|
except Exception as e:
|
|
return None, f"Error initializing Groq LLM: {str(e)}"
|
|
|
|
instruction_str = (
|
|
"1. Convert the query to executable Python code using Pandas.\n"
|
|
"2. The final line of code should be a Python expression that can be called with the `eval()` function.\n"
|
|
"3. The code should represent a solution to the query.\n"
|
|
"4. PRINT ONLY THE EXPRESSION.\n"
|
|
"5. Do not quote the expression.\n"
|
|
)
|
|
|
|
pandas_prompt_str = (
|
|
"You are working with a pandas dataframe in Python.\n"
|
|
"The name of the dataframe is `df`.\n"
|
|
"This is the result of `print(df.head())`:\n"
|
|
"{df_str}\n\n"
|
|
"Follow these instructions:\n"
|
|
"{instruction_str}\n"
|
|
"Query: {query_str}\n\n"
|
|
"Expression:"
|
|
)
|
|
|
|
response_synthesis_prompt_str = (
|
|
"Given an input question, synthesize a response from the query results.\n"
|
|
"Query: {query_str}\n\n"
|
|
"Pandas Instructions (optional):\n{pandas_instructions}\n\n"
|
|
"Pandas Output: {pandas_output}\n\n"
|
|
"Response: "
|
|
)
|
|
|
|
pandas_prompt = PromptTemplate(pandas_prompt_str).partial_format(
|
|
instruction_str=instruction_str, df_str=df.head(5)
|
|
)
|
|
pandas_output_parser = PandasInstructionParser(df)
|
|
response_synthesis_prompt = PromptTemplate(response_synthesis_prompt_str)
|
|
|
|
qp = QP(
|
|
modules={
|
|
"input": InputComponent(),
|
|
"pandas_prompt": pandas_prompt,
|
|
"llm1": llm,
|
|
"pandas_output_parser": pandas_output_parser,
|
|
"response_synthesis_prompt": response_synthesis_prompt,
|
|
"llm2": llm,
|
|
},
|
|
verbose=True,
|
|
)
|
|
qp.add_chain(["input", "pandas_prompt", "llm1", "pandas_output_parser"])
|
|
qp.add_links(
|
|
[
|
|
Link("input", "response_synthesis_prompt", dest_key="query_str"),
|
|
Link(
|
|
"llm1", "response_synthesis_prompt", dest_key="pandas_instructions"
|
|
),
|
|
Link(
|
|
"pandas_output_parser",
|
|
"response_synthesis_prompt",
|
|
dest_key="pandas_output",
|
|
),
|
|
]
|
|
)
|
|
qp.add_link("response_synthesis_prompt", "llm2")
|
|
|
|
return qp, "Query pipeline created successfully!"
|
|
|
|
def enhance_visualization(df, query):
|
|
"""
|
|
Create an enhanced visualization based on the dataframe and query
|
|
This function attempts to create a better visualization with proper labels and formatting
|
|
"""
|
|
try:
|
|
|
|
plt.close('all')
|
|
|
|
|
|
plt.figure(figsize=(12, 8), dpi=100)
|
|
|
|
|
|
if any(term in query.lower() for term in ['trend', 'time', 'year', 'month', 'booking', 'reservation']):
|
|
|
|
date_cols = [col for col in df.columns if any(term in col.lower() for term in
|
|
['date', 'year', 'month', 'time', 'arrival', 'reservation'])]
|
|
|
|
if 'arrival_date_year' in df.columns and 'arrival_date_month' in df.columns:
|
|
try:
|
|
|
|
|
|
month_order = {
|
|
'January': 1, 'February': 2, 'March': 3, 'April': 4, 'May': 5, 'June': 6,
|
|
'July': 7, 'August': 8, 'September': 9, 'October': 10, 'November': 11, 'December': 12
|
|
}
|
|
|
|
|
|
booking_counts = df.groupby(['arrival_date_year', 'arrival_date_month']).size().reset_index(name='count')
|
|
|
|
|
|
booking_counts['month_order'] = booking_counts['arrival_date_month'].map(month_order)
|
|
booking_counts = booking_counts.sort_values(['arrival_date_year', 'month_order'])
|
|
|
|
|
|
pivot_data = booking_counts.pivot(index='arrival_date_year', columns='arrival_date_month', values='count')
|
|
|
|
|
|
months = sorted(booking_counts['arrival_date_month'].unique(), key=lambda x: month_order.get(x, 13))
|
|
|
|
if len(months) > 0:
|
|
pivot_data = pivot_data[months]
|
|
|
|
|
|
ax = pivot_data.plot(kind='bar', figsize=(14, 8), width=0.8)
|
|
|
|
|
|
plt.title('Bookings by Month and Year', fontsize=16)
|
|
plt.xlabel('Year', fontsize=14)
|
|
plt.ylabel('Number of Bookings', fontsize=14)
|
|
plt.legend(title='Month', fontsize=12)
|
|
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
|
plt.tight_layout()
|
|
|
|
|
|
for container in ax.containers:
|
|
ax.bar_label(container, fontsize=9, fmt='%d')
|
|
else:
|
|
return None
|
|
except Exception as e:
|
|
print(f"Error in time visualization: {str(e)}")
|
|
return None
|
|
|
|
elif len(date_cols) > 0 and any(col in df.columns for col in date_cols):
|
|
try:
|
|
|
|
date_col = [col for col in date_cols if col in df.columns][0]
|
|
df_count = df.groupby(date_col).size().reset_index(name='count')
|
|
|
|
plt.bar(df_count[date_col], df_count['count'], color='steelblue')
|
|
plt.title(f'Distribution by {date_col}', fontsize=16)
|
|
plt.xlabel(date_col, fontsize=14)
|
|
plt.ylabel('Count', fontsize=14)
|
|
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
|
plt.xticks(rotation=45)
|
|
plt.tight_layout()
|
|
except Exception as e:
|
|
print(f"Error in date column visualization: {str(e)}")
|
|
return None
|
|
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
elif any(term in query.lower() for term in ['distribution', 'histogram', 'spread']):
|
|
try:
|
|
numeric_cols = df.select_dtypes(include=['number']).columns.tolist()
|
|
if len(numeric_cols) > 0:
|
|
|
|
target_col = None
|
|
for col in numeric_cols:
|
|
if col.lower() in query.lower():
|
|
target_col = col
|
|
break
|
|
|
|
if target_col is None and numeric_cols:
|
|
target_col = numeric_cols[0]
|
|
|
|
if target_col:
|
|
|
|
plt.hist(df[target_col].dropna(), bins=30, color='steelblue', edgecolor='black', alpha=0.7)
|
|
plt.title(f'Distribution of {target_col}', fontsize=16)
|
|
plt.xlabel(target_col, fontsize=14)
|
|
plt.ylabel('Frequency', fontsize=14)
|
|
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
|
plt.tight_layout()
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
except Exception as e:
|
|
print(f"Error in distribution visualization: {str(e)}")
|
|
return None
|
|
|
|
|
|
elif any(term in query.lower() for term in ['compare', 'comparison', 'versus', 'vs', 'most', 'least']):
|
|
try:
|
|
categorical_cols = df.select_dtypes(include=['object']).columns.tolist()
|
|
if len(categorical_cols) > 0:
|
|
|
|
target_col = None
|
|
for col in categorical_cols:
|
|
if col.lower() in query.lower():
|
|
target_col = col
|
|
break
|
|
|
|
if target_col is None and categorical_cols:
|
|
target_col = categorical_cols[0]
|
|
|
|
if target_col:
|
|
|
|
top_categories = df[target_col].value_counts().nlargest(10)
|
|
|
|
|
|
plt.bar(top_categories.index, top_categories.values, color='steelblue')
|
|
plt.title(f'Top Categories by {target_col}', fontsize=16)
|
|
plt.xlabel(target_col, fontsize=14)
|
|
plt.ylabel('Count', fontsize=14)
|
|
plt.grid(axis='y', linestyle='--', alpha=0.7)
|
|
plt.xticks(rotation=45, ha='right')
|
|
plt.tight_layout()
|
|
else:
|
|
return None
|
|
else:
|
|
return None
|
|
except Exception as e:
|
|
print(f"Error in comparison visualization: {str(e)}")
|
|
return None
|
|
else:
|
|
|
|
return None
|
|
|
|
|
|
buf = io.BytesIO()
|
|
plt.savefig(buf, format='png')
|
|
buf.seek(0)
|
|
|
|
|
|
img = Image.open(buf)
|
|
plt.close('all')
|
|
|
|
return img
|
|
except Exception as e:
|
|
print(f"Error in enhance_visualization: {str(e)}")
|
|
plt.close('all')
|
|
return None
|
|
|
|
def process_query(query, api_key, df, model_choice):
|
|
if df is None:
|
|
return "Please load a dataset first.", None
|
|
|
|
if not api_key:
|
|
return "Please provide your Groq API key.", None
|
|
|
|
try:
|
|
|
|
enhanced_img = enhance_visualization(df, query)
|
|
|
|
|
|
pipeline, message = create_query_pipeline(df, api_key, model_choice)
|
|
if pipeline is None:
|
|
return message, None
|
|
|
|
|
|
response = pipeline.run(query_str=query)
|
|
|
|
|
|
if enhanced_img is not None:
|
|
return response.message.content, enhanced_img
|
|
|
|
|
|
figures = plt.get_fignums()
|
|
|
|
if figures:
|
|
try:
|
|
|
|
fig = plt.figure(figures[0])
|
|
axes = fig.axes
|
|
|
|
if axes and len(axes) > 0:
|
|
ax = axes[0]
|
|
|
|
ax.grid(axis='y', linestyle='--', alpha=0.7)
|
|
|
|
if ax.get_title():
|
|
ax.set_title(ax.get_title(), fontsize=16)
|
|
if ax.get_xlabel():
|
|
ax.set_xlabel(ax.get_xlabel(), fontsize=14)
|
|
if ax.get_ylabel():
|
|
ax.set_ylabel(ax.get_ylabel(), fontsize=14)
|
|
|
|
if ax.get_legend():
|
|
ax.legend(fontsize=12)
|
|
fig.tight_layout()
|
|
|
|
|
|
buf = io.BytesIO()
|
|
plt.savefig(buf, format='png', dpi=100)
|
|
buf.seek(0)
|
|
|
|
|
|
img = Image.open(buf)
|
|
plt.close('all')
|
|
|
|
return response.message.content, img
|
|
except Exception as e:
|
|
plt.close('all')
|
|
|
|
print(f"Visualization error: {str(e)}")
|
|
return response.message.content, None
|
|
else:
|
|
|
|
return response.message.content, None
|
|
|
|
except Exception as e:
|
|
plt.close('all')
|
|
return f"Error processing query: {str(e)}", None
|
|
|
|
def handle_example_selection(example_name):
|
|
if example_name in EXAMPLE_DATASETS:
|
|
file_path = EXAMPLE_DATASETS[example_name]
|
|
df, message = load_dataframe(file_path)
|
|
return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}")
|
|
return None, "Please select a valid example dataset.", gr.update(value="")
|
|
|
|
def handle_file_upload(file):
|
|
if file is not None:
|
|
df, message = load_dataframe(file)
|
|
return df, message, gr.update(value=f"Dataset preview:\n{df.head().to_string()}")
|
|
return None, "No file uploaded.", gr.update(value="")
|
|
|
|
|
|
with gr.Blocks(title="Pandas Data Analysis with Groq LLM") as app:
|
|
gr.Markdown("# Pandas Data Analysis with Groq LLM")
|
|
gr.Markdown("Upload your CSV data or choose an example dataset, then ask questions about it.")
|
|
|
|
|
|
df_state = gr.State(value=None)
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=1):
|
|
with gr.Group():
|
|
gr.Markdown("### Data Selection")
|
|
with gr.Tab("Upload Data"):
|
|
file_input = gr.File(label="Upload CSV File", file_types=[".csv"])
|
|
upload_button = gr.Button("Load Uploaded Data")
|
|
|
|
with gr.Tab("Example Datasets"):
|
|
example_dropdown = gr.Dropdown(
|
|
choices=list(EXAMPLE_DATASETS.keys()),
|
|
label="Select Example Dataset"
|
|
)
|
|
example_button = gr.Button("Load Example Dataset")
|
|
|
|
data_status = gr.Textbox(label="Data Loading Status", interactive=False)
|
|
|
|
with gr.Group():
|
|
gr.Markdown("### Groq API Configuration")
|
|
api_key = gr.Textbox(
|
|
label="Enter your Groq API Key",
|
|
placeholder="gsk_...",
|
|
type="password"
|
|
)
|
|
model_choice = gr.Dropdown(
|
|
choices=["llama-3.3-70b-versatile", "mixtral-8x7b-32768", "gemma-7b-it"],
|
|
value="llama-3.3-70b-versatile",
|
|
label="Select Groq Model"
|
|
)
|
|
|
|
with gr.Column(scale=1):
|
|
data_preview = gr.Textbox(label="Dataset Preview", interactive=False, lines=10)
|
|
query_input = gr.Textbox(
|
|
label="Ask a question about your data",
|
|
placeholder="e.g., What is the trend of monthly bookings over time?",
|
|
lines=2
|
|
)
|
|
query_button = gr.Button("Submit Query")
|
|
|
|
|
|
with gr.Tabs():
|
|
with gr.TabItem("Text Response"):
|
|
response_output = gr.Textbox(label="Response", interactive=False, lines=10)
|
|
with gr.TabItem("Visualization"):
|
|
image_output = gr.Image(label="Data Visualization", interactive=False)
|
|
|
|
|
|
upload_button.click(
|
|
handle_file_upload,
|
|
inputs=[file_input],
|
|
outputs=[df_state, data_status, data_preview]
|
|
)
|
|
|
|
example_button.click(
|
|
handle_example_selection,
|
|
inputs=[example_dropdown],
|
|
outputs=[df_state, data_status, data_preview]
|
|
)
|
|
|
|
query_button.click(
|
|
process_query,
|
|
inputs=[query_input, api_key, df_state, model_choice],
|
|
outputs=[response_output, image_output]
|
|
)
|
|
|
|
gr.Markdown("""
|
|
### Instructions
|
|
1. Upload your CSV file or select an example dataset
|
|
2. Enter your Groq API key (get one at [https://console.groq.com](https://console.groq.com))
|
|
3. Ask questions about your data in natural language
|
|
4. Get AI-powered insights and visualizations based on your data
|
|
|
|
### Example Questions
|
|
- What is the trend of monthly bookings over time?
|
|
- What's the distribution of stay duration?
|
|
- Which country has the most bookings?
|
|
- Is there a correlation between lead time and cancellations?
|
|
- Show me bookings by month and year
|
|
""")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
app.launch() |