Spaces:
Running
Running
File size: 32,075 Bytes
67ede07 4f47bb5 67ede07 396bc22 4f47bb5 fa0f465 396bc22 fa0f465 396bc22 fb3e0bc 7388dac 396bc22 4f47bb5 dab7ab2 fa0f465 4f47bb5 396bc22 dab7ab2 fa0f465 4f47bb5 396bc22 4f47bb5 dab7ab2 4f47bb5 9725be2 dab7ab2 4f47bb5 de34160 320e94c de34160 320e94c dab7ab2 4f47bb5 0ee5b32 dab7ab2 4f47bb5 1f7de48 4f47bb5 3136f08 4f47bb5 7388dac 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 7388dac 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 7388dac 3136f08 4f47bb5 396bc22 4f47bb5 3136f08 dab7ab2 4f47bb5 7388dac d916e82 4f47bb5 de34160 4f47bb5 de34160 4f47bb5 75486a2 4f47bb5 75486a2 4f47bb5 32de8a6 4f47bb5 32de8a6 4f47bb5 32de8a6 4f47bb5 32de8a6 4f47bb5 7388dac 4f47bb5 fb3e0bc 4f47bb5 32de8a6 4f47bb5 32de8a6 4f47bb5 32de8a6 7388dac dab7ab2 4f47bb5 7388dac 4f47bb5 7388dac de34160 4f47bb5 75486a2 4f47bb5 75486a2 fa0f465 4f47bb5 de34160 4f47bb5 7388dac fa0f465 396bc22 4f47bb5 dab7ab2 4f47bb5 75486a2 4f47bb5 75486a2 4f47bb5 75486a2 4f47bb5 75486a2 4f47bb5 9725be2 4f47bb5 75486a2 9725be2 75486a2 4f47bb5 9725be2 4f47bb5 9725be2 3136f08 dab7ab2 4f47bb5 0ee5b32 4f47bb5 0ee5b32 4f47bb5 0ee5b32 4f47bb5 0ee5b32 4f47bb5 67ede07 4f47bb5 0ee5b32 4f47bb5 75486a2 7388dac 4f47bb5 9725be2 de34160 9725be2 4f47bb5 9725be2 dab7ab2 3136f08 4f47bb5 32de8a6 4f47bb5 32de8a6 4f47bb5 7388dac 32de8a6 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 7388dac 4f47bb5 7388dac dab7ab2 4f47bb5 75486a2 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 32de8a6 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 dab7ab2 4f47bb5 7388dac 4f47bb5 67ede07 7388dac dab7ab2 4f47bb5 dab7ab2 75486a2 dab7ab2 75486a2 4f47bb5 7388dac 4f47bb5 75486a2 4f47bb5 75486a2 4f47bb5 75486a2 4f47bb5 de34160 4f47bb5 de34160 4f47bb5 de34160 4f47bb5 75486a2 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 1e18317 4f47bb5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 |
"""
Review Validator - Final Version with SerpAPI Integration
"""
import os
import io
import warnings
from collections import Counter
import numpy as np
import streamlit as st
from transformers import pipeline, logging as hf_logging
from PIL import Image
import matplotlib
import matplotlib.pyplot as plt
import requests
from reportlab.lib.pagesizes import A4
from reportlab.platypus import (
SimpleDocTemplate,
Paragraph,
Spacer,
Table,
TableStyle,
)
from reportlab.lib.styles import getSampleStyleSheet
from reportlab.lib import colors
# ------------------- SILENCE NOISE -------------------
warnings.filterwarnings("ignore")
hf_logging.set_verbosity_error()
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
matplotlib.use("Agg")
st.set_page_config(
page_title="Review Validator",
page_icon="π‘οΈ",
layout="wide",
initial_sidebar_state="collapsed",
)
# ------------------- MODEL NAMES -------------------
MODEL_FAKE = "openai-community/roberta-base-openai-detector"
MODEL_MOOD = "cardiffnlp/twitter-roberta-base-sentiment-latest"
MODEL_GRAMMAR = "textattack/roberta-base-CoLA"
MODEL_IMG_A = "dima806/ai_generated_image_detection"
MODEL_IMG_B = "umm-maybe/AI-image-detector"
MODEL_CAPTION = "Salesforce/blip-image-captioning-base"
# ------------------- TOKENS / SECRETS -------------------
def get_hf_token():
token = os.environ.get("HF_TOKEN")
if token:
return token
try:
if hasattr(st, "secrets") and "HF_TOKEN" in st.secrets:
return st.secrets["HF_TOKEN"]
except Exception:
pass
return None
def get_serpapi_key():
key = os.environ.get("SERPAPI_KEY")
if key:
return key
try:
if hasattr(st, "secrets") and "SERPAPI_KEY" in st.secrets:
return st.secrets["SERPAPI_KEY"]
except Exception:
pass
return None
HF_TOKEN = get_hf_token()
# ------------------- CSS -------------------
def inject_custom_css():
st.markdown(
"""
<style>
.stApp {
background-color: #ffffff;
color: #333333;
font-family: "Helvetica Neue", sans-serif;
}
h1 { color:#2C3E50; font-weight:800; }
h2 { color:#34495E; font-weight:600; }
.hero-box {
padding:40px;
background:linear-gradient(135deg,#667eea 0%,#764ba2 100%);
border-radius:20px;
color:white;
text-align:center;
margin-bottom:30px;
}
.hero-title{font-size:3rem;font-weight:bold;margin-bottom:10px;}
.hero-subtitle{font-size:1.2rem;opacity:0.9;}
.feature-card{
background:#F8F9FA;
padding:20px;
border-radius:15px;
border:1px solid #EEEEEE;
text-align:center;
transition:transform 0.2s;
}
.feature-card:hover{transform:translateY(-5px);border-color:#764ba2;}
.emoji-icon{font-size:3rem;margin-bottom:10px;display:block;}
.stat-box{
text-align:center;
padding:15px;
border-radius:12px;
background:white;
box-shadow:0 4px 6px rgba(0,0,0,0.05);
border:1px solid #EEE;
}
.stat-num{font-size:24px;font-weight:900;color:#333;}
.stat-txt{font-size:12px;text-transform:uppercase;color:#777;letter-spacing:1px;}
.analysis-box{
background:#f0f7ff;
border-left:5px solid #4285F4;
padding:15px;
border-radius:5px;
margin-top:15px;
}
.stButton>button{
border-radius:30px;
font-weight:bold;
border:none;
padding:0.5rem 2rem;
transition:all 0.3s;
}
</style>
""",
unsafe_allow_html=True,
)
# ------------------- LOAD MODELS -------------------
@st.cache_resource(show_spinner=False)
def load_ai_squad():
squad = {}
if not HF_TOKEN:
return None, "HF_TOKEN missing. Set it in env or Streamlit secrets."
try:
try:
squad["fake"] = pipeline(
"text-classification", model=MODEL_FAKE, token=HF_TOKEN
)
except Exception as e:
print("Fake model error:", e)
try:
squad["mood"] = pipeline(
"sentiment-analysis",
model=MODEL_MOOD,
tokenizer=MODEL_MOOD,
token=HF_TOKEN,
)
except Exception as e:
print("Mood model error:", e)
try:
squad["grammar"] = pipeline(
"text-classification", model=MODEL_GRAMMAR, token=HF_TOKEN
)
except Exception as e:
print("Grammar model error:", e)
try:
squad["img_a"] = pipeline(
"image-classification", model=MODEL_IMG_A, token=HF_TOKEN
)
squad["img_b"] = pipeline(
"image-classification", model=MODEL_IMG_B, token=HF_TOKEN
)
squad["caption"] = pipeline(
"image-to-text", model=MODEL_CAPTION, token=HF_TOKEN
)
except Exception as e:
print("Image model error:", e)
except Exception as e:
return None, str(e)
return squad, None
# ------------------- TEXT HELPERS -------------------
def compute_text_stats(text: str):
sentences = [
s.strip()
for s in text.replace("!", ".").replace("?", ".").split(".")
if s.strip()
]
words = text.split()
word_count = len(words)
sent_lengths = [len(s.split()) for s in sentences] if sentences else []
avg_sent_len = np.mean(sent_lengths) if sent_lengths else 0.0
vocab = {w.lower().strip(".,!?\"'") for w in words if w.strip()}
vocab_size = len(vocab)
ttr = (vocab_size / word_count * 100) if word_count > 0 else 0.0
cleaned = [w.lower().strip(".,!?\"'") for w in words if w.strip()]
common = Counter(cleaned).most_common(8)
return {
"sentence_count": len(sentences),
"word_count": word_count,
"avg_sentence_length": avg_sent_len,
"vocab_size": vocab_size,
"type_token_ratio": ttr,
"sentence_lengths": sent_lengths,
"top_words": common,
}
def explain_text(res, stats):
lines = []
bot = res["bot_score"]
gram = res["grammar_score"]
mood = res["mood_label"]
if bot > 70:
lines.append(
"The AI-likeness score is high, indicating that the review strongly resembles machine-generated text."
)
elif bot > 40:
lines.append(
"The AI-likeness score is in a borderline range, so the review should be treated with caution."
)
else:
lines.append(
"The AI-likeness score is low, suggesting the review is likely human-written."
)
if gram > 80:
lines.append(
"Grammar quality is unusually clean and consistent, which sometimes correlates with AI-written or heavily edited content."
)
elif gram < 40:
lines.append(
"Grammar quality is weak, which can indicate spammy content but usually not advanced AI writing."
)
else:
lines.append(
"Grammar quality is moderate and falls within a typical human writing range."
)
lines.append(
f"The sentiment model detects a {mood.lower()} tone, which can be cross-checked with the context of the review."
)
lines.append(
f"The review contains {stats['sentence_count']} sentences and {stats['word_count']} words, with an average of {stats['avg_sentence_length']:.1f} words per sentence."
)
lines.append(
f"The vocabulary richness (type-token ratio) is approximately {stats['type_token_ratio']:.1f}%, indicating how repetitive or diverse the language is."
)
return "\n\n".join(lines)
def check_text(text, squad):
if "fake" not in squad:
return {"error": True}
res_fake = squad["fake"](text[:512])[0]
bot = res_fake["score"] if res_fake["label"] == "Fake" else 1 - res_fake["score"]
mood_label = "Unknown"
if "mood" in squad:
res_m = squad["mood"](text[:512])[0]
mood_label = res_m["label"]
grammar_score = 0.5
if "grammar" in squad:
res_g = squad["grammar"](text[:512])[0]
grammar_score = (
res_g["score"] if res_g["label"] == "LABEL_1" else 1 - res_g["score"]
)
stats = compute_text_stats(text)
return {
"bot_score": bot * 100,
"mood_label": mood_label,
"grammar_score": grammar_score * 100,
"stats": stats,
"error": False,
}
# ------------------- IMAGE HELPERS -------------------
def get_image_from_url(url: str):
"""
Returns (PIL.Image or None, error_message or None)
Handles 403 cleanly instead of throwing exceptions.
"""
try:
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/120.0 Safari/537.36"
}
r = requests.get(url, headers=headers, timeout=10)
if r.status_code == 403:
return None, (
"The image host returned HTTP 403 (Forbidden). "
"This usually means the server is blocking automated downloads. "
"Download the image manually and upload it as a file instead."
)
if r.status_code != 200:
return None, f"Image host returned HTTP {r.status_code}."
img = Image.open(io.BytesIO(r.content)).convert("RGB")
return img, None
except Exception as e:
return None, f"Error fetching image: {e}"
def check_image(img, squad):
score_a = 0.0
score_b = 0.0
caption = "Analysis unavailable."
ai_words = ["fake", "artificial", "ai", "generated"]
if "img_a" in squad:
try:
for r in squad["img_a"](img):
if any(w in r["label"].lower() for w in ai_words):
score_a = max(score_a, r["score"])
except Exception as e:
print("img_a error:", e)
if "img_b" in squad:
try:
for r in squad["img_b"](img):
if any(w in r["label"].lower() for w in ai_words):
score_b = max(score_b, r["score"])
except Exception as e:
print("img_b error:", e)
else:
score_b = score_a
if "caption" in squad:
try:
cap_res = squad["caption"](img)
caption = cap_res[0]["generated_text"]
except Exception:
pass
avg_ai = (score_a + score_b) / 2
match = 1.0 - abs(score_a - score_b)
return {
"ai_chance": avg_ai * 100,
"match": match,
"score_a": score_a * 100,
"score_b": score_b * 100,
"caption": caption,
}
# ------------------- SERPAPI REVERSE IMAGE -------------------
def serpapi_reverse_image_search(image_url: str, api_key: str):
"""
Google Reverse Image Search using SerpAPI.
Returns dict or None, and error_message if any.
"""
if not api_key:
return None, "SerpAPI key not configured."
if not image_url:
return None, "No image URL provided."
try:
params = {
"engine": "google_reverse_image",
"image_url": image_url,
"api_key": api_key,
"output": "json",
}
resp = requests.get("https://serpapi.com/search", params=params, timeout=25)
if resp.status_code == 403:
return None, (
"SerpAPI returned HTTP 403 (Forbidden). "
"Check that the API key is valid and you have enough quota."
)
if resp.status_code != 200:
return None, f"SerpAPI HTTP {resp.status_code}: {resp.text[:180]}"
data = resp.json()
result = {
"best_guess": data.get("image_guess"),
"visual_matches": data.get("visual_matches", []),
}
return result, None
except Exception as e:
return None, f"Error calling SerpAPI: {e}"
# ------------------- PLOTS -------------------
def breakdown_chart(res):
labels = ["Bot Probability", "Grammar Quality"]
vals = [res["bot_score"], res["grammar_score"]]
fig, ax = plt.subplots(figsize=(4, 2.2))
y = np.arange(len(labels))
ax.barh(y, vals)
ax.set_yticks(y)
ax.set_yticklabels(labels)
ax.invert_yaxis()
ax.set_xlim(0, 100)
for i, v in enumerate(vals):
ax.text(v + 1, i, f"{v:.0f}%", va="center", fontsize=8)
plt.tight_layout()
return fig
def sentence_length_hist(stats):
fig, ax = plt.subplots(figsize=(4, 2.2))
if stats["sentence_lengths"]:
ax.hist(
stats["sentence_lengths"],
bins=min(8, len(stats["sentence_lengths"])),
)
ax.set_xlabel("Words per sentence")
ax.set_ylabel("Frequency")
ax.set_title("Sentence Length Distribution")
plt.tight_layout()
return fig
def word_frequency_chart(stats):
fig, ax = plt.subplots(figsize=(4, 2.2))
top = stats["top_words"]
if top:
words = [w for w, _ in top]
counts = [c for _, c in top]
ax.bar(words, counts)
ax.set_xticklabels(words, rotation=45, ha="right", fontsize=8)
ax.set_title("Top Word Frequency")
plt.tight_layout()
return fig
# ------------------- PDF REPORT -------------------
def generate_pdf(text_input, text_res, image_res, reverse_res, platform):
buf = io.BytesIO()
doc = SimpleDocTemplate(buf, pagesize=A4, leftMargin=30, rightMargin=30)
styles = getSampleStyleSheet()
elems = []
elems.append(Paragraph("Review Validator Report", styles["Title"]))
elems.append(Spacer(1, 6))
elems.append(Paragraph(f"Platform: {platform}", styles["Normal"]))
elems.append(Spacer(1, 10))
if text_input:
elems.append(Paragraph("Input Review Text", styles["Heading2"]))
elems.append(Spacer(1, 4))
safe = text_input.replace("\n", "<br/>")
elems.append(Paragraph(safe, styles["Normal"]))
elems.append(Spacer(1, 8))
if text_res and not text_res.get("error", False):
stats = text_res["stats"]
elems.append(Paragraph("Text Authenticity Analysis", styles["Heading2"]))
data = [
["Bot-likeness", f"{text_res['bot_score']:.1f}%"],
["Grammar Quality", f"{text_res['grammar_score']:.1f}%"],
["Sentiment", text_res["mood_label"]],
["Sentence Count", str(stats["sentence_count"])],
["Word Count", str(stats["word_count"])],
["Avg. Sentence Length", f"{stats['avg_sentence_length']:.1f}"],
["Type-Token Ratio", f"{stats['type_token_ratio']:.1f}%"],
]
tbl = Table(data, hAlign="LEFT")
tbl.setStyle(
TableStyle(
[
("BACKGROUND", (0, 0), (-1, 0), colors.lightgrey),
("GRID", (0, 0), (-1, -1), 0.25, colors.grey),
("BOX", (0, 0), (-1, -1), 0.25, colors.black),
]
)
)
elems.append(tbl)
elems.append(Spacer(1, 8))
explanation = explain_text(text_res, stats)
elems.append(Paragraph("Interpretation", styles["Heading3"]))
for para in explanation.split("\n\n"):
elems.append(Paragraph(para, styles["Normal"]))
elems.append(Spacer(1, 3))
if image_res:
elems.append(Spacer(1, 8))
elems.append(Paragraph("Image Authenticity Analysis", styles["Heading2"]))
data2 = [
["AI-likeness (avg)", f"{image_res['ai_chance']:.1f}%"],
["Model A Score", f"{image_res['score_a']:.1f}%"],
["Model B Score", f"{image_res['score_b']:.1f}%"],
["Model Agreement", f"{image_res['match']*100:.1f}%"],
]
t2 = Table(data2, hAlign="LEFT")
t2.setStyle(
TableStyle(
[
("BACKGROUND", (0, 0), (-1, 0), colors.lightgrey),
("GRID", (0, 0), (-1, -1), 0.25, colors.grey),
("BOX", (0, 0), (-1, -1), 0.25, colors.black),
]
)
)
elems.append(t2)
elems.append(Spacer(1, 4))
elems.append(Paragraph(f"Caption: {image_res['caption']}", styles["Normal"]))
if reverse_res:
elems.append(Spacer(1, 8))
elems.append(Paragraph("Reverse Image Search (SerpAPI)", styles["Heading2"]))
best = reverse_res.get("best_guess")
count = reverse_res.get("count", 0)
elems.append(Paragraph(f"Visual matches found: {count}", styles["Normal"]))
if best:
elems.append(Paragraph(f"Google best guess: {best}", styles["Normal"]))
links = reverse_res.get("top_links", [])
if links:
elems.append(Spacer(1, 4))
elems.append(Paragraph("Top Matching Sources:", styles["Heading3"]))
for item in links:
line = f"{item.get('title') or item.get('link')} (source: {item.get('source')})"
elems.append(Paragraph(line, styles["Normal"]))
elems.append(Spacer(1, 2))
doc.build(elems)
pdf_bytes = buf.getvalue()
buf.close()
return pdf_bytes
# ------------------- UI: LANDING -------------------
def landing_page():
st.markdown(
"""
<div class="hero-box">
<div class="hero-title">π‘οΈ Review Validator</div>
<div class="hero-subtitle">
Detect AI-written reviews, AI-generated product images, and reused images via Google Reverse Image Search.
</div>
</div>
""",
unsafe_allow_html=True,
)
c1, c2, c3 = st.columns(3)
with c1:
st.markdown(
"""
<div class="feature-card">
<span class="emoji-icon">π€</span>
<h3>Text Authenticity</h3>
<p>Transformer-based models estimate how likely a review is written by AI.</p>
</div>
""",
unsafe_allow_html=True,
)
with c2:
st.markdown(
"""
<div class="feature-card">
<span class="emoji-icon">πΈ</span>
<h3>Image Authenticity</h3>
<p>Dual detectors and captioning analyze whether an image is real or AI-generated.</p>
</div>
""",
unsafe_allow_html=True,
)
with c3:
st.markdown(
"""
<div class="feature-card">
<span class="emoji-icon">π</span>
<h3>Reverse Search</h3>
<p>SerpAPI + Google Reverse Image API to see where else the image appears online.</p>
</div>
""",
unsafe_allow_html=True,
)
_, mid, _ = st.columns([1, 2, 1])
with mid:
if st.button("π START CHECKING REVIEWS", type="primary", use_container_width=True):
st.session_state["page"] = "detector"
st.rerun()
# ------------------- UI: DETECTOR -------------------
def detector_page(squad):
c1, c2 = st.columns([3, 1])
with c1:
st.markdown("### π Select Platform")
platform = st.selectbox(
"Platform", ["Amazon", "Flipkart", "Zomato", "Swiggy", "Myntra", "Other"],
label_visibility="collapsed",
)
with c2:
if st.button("β¬
οΈ Back Home"):
st.session_state["page"] = "landing"
st.rerun()
st.divider()
tab_text, tab_img = st.tabs(["π Text Review", "πΈ Product Image"])
# -------- TEXT TAB --------
with tab_text:
col_left, col_right = st.columns([2, 1])
with col_left:
txt = st.text_area(
"Paste Review Here:",
height=180,
placeholder="Example: I ordered this yesterday and it exceeded expectations...",
)
with col_right:
st.info("Tip: Paste full review text for more accurate analysis.")
if st.button("Analyze Text", type="primary", use_container_width=True):
if not txt.strip():
st.error("Please paste a review first.")
else:
with st.spinner("Analyzing review..."):
res = check_text(txt.strip(), squad)
st.session_state["text_res"] = res
st.session_state["text_raw"] = txt.strip()
st.session_state["platform"] = platform
if "text_res" in st.session_state:
res = st.session_state["text_res"]
if res.get("error"):
st.error("Text models failed to load. Check HF_TOKEN.")
else:
stats = res["stats"]
st.markdown("---")
k1, k2, k3 = st.columns(3)
color = "red" if res["bot_score"] > 50 else "green"
k1.markdown(
f'<div class="stat-box"><div class="stat-num" style="color:{color}">{res["bot_score"]:.0f}%</div><div class="stat-txt">Bot Chance</div></div>',
unsafe_allow_html=True,
)
k2.markdown(
f'<div class="stat-box"><div class="stat-num">{res["grammar_score"]:.0f}%</div><div class="stat-txt">Grammar</div></div>',
unsafe_allow_html=True,
)
k3.markdown(
f'<div class="stat-box"><div class="stat-num">{stats["word_count"]}</div><div class="stat-txt">Total Words</div></div>',
unsafe_allow_html=True,
)
g1, g2, g3 = st.columns(3)
with g1:
st.pyplot(breakdown_chart(res))
with g2:
st.pyplot(sentence_length_hist(stats))
with g3:
st.pyplot(word_frequency_chart(stats))
st.markdown("#### Explanation")
st.markdown(explain_text(res, stats))
st.markdown("---")
if st.button("Generate PDF (Text Only)", use_container_width=False):
pdf = generate_pdf(
st.session_state.get("text_raw", ""),
res,
st.session_state.get("img_res"),
st.session_state.get("reverse_search_results"),
st.session_state.get("platform", platform),
)
st.session_state["pdf_text"] = pdf
if "pdf_text" in st.session_state:
st.download_button(
"β¬οΈ Download Text Analysis PDF",
data=st.session_state["pdf_text"],
file_name="review_validator_text.pdf",
mime="application/pdf",
)
# -------- IMAGE TAB --------
with tab_img:
col_in, col_out = st.columns([1, 1])
with col_in:
st.markdown("#### Step 1: Provide Image")
method = st.radio(
"Input type",
["Paste URL", "Upload File"],
horizontal=True,
label_visibility="collapsed",
)
with st.form("image_form"):
img_file = None
url = ""
auto_reverse = False
if method == "Paste URL":
url = st.text_input("Image URL")
auto_reverse = st.checkbox(
"Also perform Google Reverse Image Search on this URL",
value=True,
)
else:
img_file = st.file_uploader(
"Upload Image", type=["jpg", "jpeg", "png"]
)
submitted = st.form_submit_button(
"Analyze Image", type="primary", use_container_width=True
)
if submitted:
target = None
err_msg = None
if method == "Paste URL":
if not url.strip():
st.error("Please enter a valid image URL.")
else:
img, err = get_image_from_url(url.strip())
if err:
st.error(err)
else:
target = img
st.session_state["last_image_url"] = url.strip()
else:
if not img_file:
st.error("Please upload an image file.")
else:
try:
target = Image.open(img_file).convert("RGB")
st.session_state["last_image_url"] = None
except Exception as e:
st.error(f"Error reading image: {e}")
if target is not None:
with st.spinner("Running image authenticity checks..."):
img_res = check_image(target, squad)
st.session_state["current_img"] = target
st.session_state["img_res"] = img_res
# Auto reverse search if URL + checkbox + key available
if method == "Paste URL" and auto_reverse:
serp_key = get_serpapi_key()
if not serp_key:
st.warning(
"SerpAPI key not configured. Skipping reverse image search."
)
else:
with st.spinner("Performing reverse image search via SerpAPI..."):
rev, err = serpapi_reverse_image_search(
url.strip(), serp_key
)
if err:
st.error(err)
elif rev:
matches = rev.get("visual_matches", [])
st.session_state["reverse_search_results"] = {
"best_guess": rev.get("best_guess"),
"count": len(matches),
"top_links": [
{
"title": m.get("title"),
"link": m.get("link"),
"source": m.get("source"),
}
for m in matches[:5]
],
}
with col_out:
if "current_img" in st.session_state:
st.image(
st.session_state["current_img"],
use_column_width=True,
caption="Analyzed Image",
)
if "img_res" in st.session_state:
data = st.session_state["img_res"]
ai = data["ai_chance"]
st.markdown("#### Step 2: Image Analysis Result")
st.markdown(
f"""
<div class="analysis-box">
<strong>Visual Caption:</strong><br/>
{data['caption']}
</div>
""",
unsafe_allow_html=True,
)
if data["match"] < 0.6:
st.warning(
"Detectors disagree significantly. Image may be heavily edited or ambiguous."
)
elif ai > 60:
st.error(f"Likely AI-generated image ({ai:.0f}% probability).")
else:
st.success(
f"Likely real photograph ({100 - ai:.0f}% probability)."
)
st.progress(ai / 100.0, text=f"AI-likeness: {ai:.1f}%")
with st.expander("Detector Breakdown"):
st.write(f"Model A: {data['score_a']:.1f}%")
st.write(f"Model B: {data['score_b']:.1f}%")
st.write(f"Agreement: {data['match']*100:.1f}%")
st.markdown("---")
st.markdown("### π Reverse Image Search (Manual Call)")
r_col1, r_col2 = st.columns([2, 1])
with r_col1:
manual_url = st.text_input(
"Public image URL (optional, for manual reverse search):",
value=st.session_state.get("last_image_url", "") or "",
)
with r_col2:
if st.button("Run Reverse Search", use_container_width=True):
key = get_serpapi_key()
if not key:
st.error("SerpAPI key not configured.")
elif not manual_url.strip():
st.error("Please enter an image URL.")
else:
with st.spinner("Calling SerpAPI Google Reverse Image API..."):
rev, err = serpapi_reverse_image_search(
manual_url.strip(), key
)
if err:
st.error(err)
elif rev:
matches = rev.get("visual_matches", [])
st.success("Reverse image search completed.")
if rev.get("best_guess"):
st.write(f"Google best guess: {rev['best_guess']}")
st.write(f"Total visual matches: {len(matches)}")
if matches:
st.markdown("**Top sources:**")
for m in matches[:5]:
st.markdown(
f"- [{m.get('title') or m.get('link')}]({m.get('link')}) _(source: {m.get('source')})_"
)
st.session_state["reverse_search_results"] = {
"best_guess": rev.get("best_guess"),
"count": len(matches),
"top_links": [
{
"title": m.get("title"),
"link": m.get("link"),
"source": m.get("source"),
}
for m in matches[:5]
],
}
st.markdown("---")
if st.button("Generate Full PDF (Text + Image + Reverse)", use_container_width=False):
pdf_full = generate_pdf(
st.session_state.get("text_raw", ""),
st.session_state.get("text_res"),
st.session_state.get("img_res"),
st.session_state.get("reverse_search_results"),
st.session_state.get("platform", "Unknown"),
)
st.session_state["pdf_full"] = pdf_full
if "pdf_full" in st.session_state:
st.download_button(
"β¬οΈ Download Full Analysis PDF",
data=st.session_state["pdf_full"],
file_name="review_validator_full.pdf",
mime="application/pdf",
)
# ------------------- MAIN -------------------
def main():
inject_custom_css()
if "page" not in st.session_state:
st.session_state["page"] = "landing"
with st.spinner("Loading AI models..."):
squad, err = load_ai_squad()
if not squad:
st.error(err)
return
if st.session_state["page"] == "landing":
landing_page()
else:
detector_page(squad)
if __name__ == "__main__":
main()
|