|
"""LangGraph Agent""" |
|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
from langchain_groq import ChatGroq |
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
from supabase.client import Client, create_client |
|
|
|
load_dotenv() |
|
|
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
|
|
@tool |
|
def divide(a: int, b: int) -> float: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
|
|
@tool |
|
def wiki_search(query: str) -> dict: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
] |
|
) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
|
|
@tool |
|
def web_search(query: str) -> dict: |
|
"""Search Tavily for a query and return maximum 3 results, |
|
formatted with source URL, title, and content. |
|
|
|
Args: |
|
query: The search query. |
|
""" |
|
|
|
tavily_tool = TavilySearchResults(max_results=3) |
|
|
|
|
|
|
|
search_docs = tavily_tool.invoke(query) |
|
|
|
final_formatted_docs = [] |
|
|
|
if isinstance(search_docs, list): |
|
for doc_dict in search_docs: |
|
if isinstance(doc_dict, dict): |
|
|
|
source_url = doc_dict.get( |
|
"url", |
|
"N/A" |
|
) |
|
page_content = doc_dict.get( |
|
"content", |
|
"" |
|
) |
|
title = doc_dict.get( |
|
"title", |
|
"No Title Provided" |
|
) |
|
|
|
|
|
final_formatted_docs.append( |
|
f'<Document source="{source_url}" title="{title}"/>\n{page_content}\n</Document>' |
|
) |
|
else: |
|
|
|
print( |
|
f"[web_search_DEBUG] Expected a dictionary in search_docs list, but got {type(doc_dict)}: {str(doc_dict)[:100]}" |
|
) |
|
elif isinstance(search_docs, str): |
|
|
|
print( |
|
f"[web_search_DEBUG] Tavily search returned a string, possibly an error: {search_docs}" |
|
) |
|
final_formatted_docs.append( |
|
f'<Document source="Error" title="Error"/>\n{search_docs}\n</Document>' |
|
) |
|
else: |
|
|
|
print( |
|
f"[web_search_DEBUG] Expected search_docs to be a list or string, but got {type(search_docs)}. Output may be empty." |
|
) |
|
|
|
joined_formatted_docs = "\n\n---\n\n".join(final_formatted_docs) |
|
|
|
return {"web_results": joined_formatted_docs} |
|
|
|
|
|
@tool |
|
def arvix_search(query: str) -> dict: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
|
|
|
|
|
|
processed_docs_str_list = [] |
|
for i, doc in enumerate(search_docs): |
|
|
|
|
|
|
|
|
|
|
|
|
|
title = doc.metadata.get("Title", "N/A") |
|
published = doc.metadata.get( |
|
"Published", |
|
"N/A" |
|
) |
|
|
|
content_snippet = doc.page_content |
|
|
|
formatted_doc_str = f'<Document title="{title}" published="{published}"/>\n{content_snippet}\n</Document>' |
|
processed_docs_str_list.append(formatted_doc_str) |
|
|
|
formatted_search_results = "\n\n---\n\n".join(processed_docs_str_list) |
|
|
|
|
|
|
|
return {"arvix_results": formatted_search_results} |
|
|
|
|
|
@tool |
|
def similar_question_search(question: str) -> dict: |
|
"""Search the vector database for similar questions and return the first results. |
|
|
|
Args: |
|
question: the question human provided.""" |
|
matched_docs = vector_store.similarity_search(question, 3) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in matched_docs |
|
] |
|
) |
|
return {"similar_questions": formatted_search_docs} |
|
|
|
|
|
|
|
with open("system_prompt.txt", "r", encoding="utf-8") as f: |
|
system_prompt = f.read() |
|
|
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
supabase: Client = create_client( |
|
os.environ.get("SUPABASE_URL"), |
|
os.environ.get("SUPABASE_SERVICE_KEY")) |
|
vector_store = SupabaseVectorStore( |
|
client=supabase, |
|
embedding= embeddings, |
|
table_name="documents", |
|
query_name="match_documents_langchain", |
|
) |
|
create_retriever_tool = create_retriever_tool( |
|
retriever=vector_store.as_retriever(), |
|
name="question_retriever", |
|
description="A tool to retrieve similar questions from a vector store.", |
|
) |
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
similar_question_search, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "google"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.5-flash-preview-04-17", temperature=0) |
|
|
|
|
|
|
|
elif provider == "huggingface": |
|
|
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", |
|
temperature=0, |
|
), |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") |
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
|
|
def retriever(state: MessagesState): |
|
"""Retriever node""" |
|
similar_question = vector_store.similarity_search(state["messages"][0].content) |
|
example_msg = HumanMessage( |
|
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}", |
|
) |
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |
|
|
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
|
|
graph = build_graph(provider="google") |
|
|
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |
|
|