Spaces:
Runtime error
Runtime error
# 参数对照表 | |
`AdvancedParams` 用 `adp` 代替,名称变动的原则是和 Fooocus 进行统一: | |
| Fooocus-API | FooocusAPI | 备注 | | |
|------------------------------------------|--------------------------------------|---------------------| | |
| prompt | prompt | | | |
| negative_prompt | negative_prompt | | | |
| style_selections | style_selections | | | |
| performance_selection | performance_selection | | | |
| aspect_ratios_selection | aspect_ratios_selection | | | |
| image_number | image_number | | | |
| image_seed | image_seed | | | |
| sharpness | sharpness | | | |
| guidance_scale | guidance_scale | | | |
| base_model_name | base_model_name | | | |
| refiner_model_name | refiner_model_name | | | |
| refiner_switch | refiner_switch | | | |
| loras | loras | 传入格式相同,都是 Lora 对象列表 | | |
| | input_image_checkbox | 可以忽略,它总是为 True | | |
| | current_tab | 可以忽略,根据参数会自动判断 | | |
| uov_method | uov_method | | | |
| **input_image** | **uov_input_image** | 使用 Fooocus 的变量名称 | | |
| outpaint_selections | outpaint_selections | | | |
| **input_image** | **inpaint_input_image** | 使用 Fooocus 的变量名称 | | |
| inpaint_additional_prompt | inpaint_additional_prompt | | | |
| **input_mask** | **inpaint_mask_image_upload** | 使用 Fooocus 的变量名称 | | |
| adp.disable_preview | disable_preview | | | |
| adp.disable_intermediate_results | disable_intermediate_results | | | |
| adp.disable_seed_increment | disable_seed_increment | | | |
| adp.black_out_nsfw | black_out_nsfw | | | |
| adp.adm_scaler_positive | adm_scaler_positive | | | |
| adp.adm_scaler_negative | adm_scaler_negative | | | |
| adp.adm_scaler_end | adm_scaler_end | | | |
| adp.adaptive_cfg | adaptive_cfg | | | |
| adp.clip_skip | clip_skip | | | |
| adp.sampler_name | sampler_name | | | |
| adp.scheduler_name | scheduler_name | | | |
| adp.vae_name | vae_name | | | |
| adp.overwrite_step | overwrite_step | | | |
| adp.overwrite_switch | overwrite_switch | | | |
| adp.overwrite_width | overwrite_width | | | |
| adp.overwrite_height | overwrite_height | | | |
| adp.overwrite_vary_strength | overwrite_vary_strength | | | |
| adp.overwrite_upscale_strength | overwrite_upscale_strength | | | |
| adp.mixing_image_prompt_and_vary_upscale | mixing_image_prompt_and_vary_upscale | | | |
| adp.mixing_image_prompt_and_inpaint | mixing_image_prompt_and_inpaint | | | |
| adp.debugging_cn_preprocessor | debugging_cn_preprocessor | | | |
| adp.skipping_cn_preprocessor | skipping_cn_preprocessor | | | |
| adp.canny_low_threshold | canny_low_threshold | | | |
| adp.canny_high_threshold | canny_high_threshold | | | |
| adp.refiner_swap_method | refiner_swap_method | | | |
| adp.controlnet_softness | controlnet_softness | | | |
| adp.freeu_enabled | freeu_enabled | | | |
| adp.freeu_b1 | freeu_b1 | | | |
| adp.freeu_b2 | freeu_b2 | | | |
| adp.freeu_s1 | freeu_s1 | | | |
| adp.freeu_s2 | freeu_s2 | | | |
| adp.debugging_inpaint_preprocessor | debugging_inpaint_preprocessor | | | |
| adp.inpaint_disable_initial_latent | inpaint_disable_initial_latent | | | |
| adp.inpaint_engine | inpaint_engine | | | |
| adp.inpaint_strength | inpaint_strength | | | |
| adp.inpaint_respective_field | inpaint_respective_field | | | |
| adp.inpaint_mask_upload_checkbox | inpaint_mask_upload_checkbox | | | |
| adp.invert_mask_checkbox | invert_mask_checkbox | | | |
| adp.inpaint_erode_or_dilate | inpaint_erode_or_dilate | | | |
| **image_prompts** | **controlnet_image** | 只是属性名称变更 | | |
| | generate_image_grid | 新增,这是个测试选项,建议默认 | | |
| outpaint_distance_left | outpaint_distance | 这四个属性合并为了一个属性 | | |
| outpaint_distance_right | | 可以通过一个列表传递这四个值 | | |
| outpaint_distance_top | | 例如:[100, 50, 0, 0] | | |
| outpaint_distance_bottom | | 方向是:左, 上, 右, 下 | | |
| **upscale_value** | **upscale_multiple** | 属性名变更 | | |
| | preset | 新增,可以通过该属性指定使用的预设 | | |
| | stream_output | 新增流式输出,类似 LLM 的流式输出 | | |
| **save_meta** | **save_metadata_to_images** | | | |
| **meta_scheme** | **metadata_scheme** | | | |
| **save_extension** | **output_format** | | | |
| save_name | | 移除,不支持自定义文件名 | | |
| read_wildcards_in_order | read_wildcards_in_order | | | |
| require_base64 | require_base64 | 该参数后续可能会被移除 | | |
| async_process | async_process | | | |
| webhook_url | webhook_url | | | |
简单说来就是 | |
- 将所有 `AdvancedParams` 平移到上一级 | |
- 修改部分参数名 | |
- `input_image` -> `inpaint_input_image` | |
- `inpaint_mask` -> `inpaint_mask_image_upload` | |
- `input_image` -> `uov_input_image` | |
- `image_prompts` -> `controlnet_image` | |
- `upscale_value` -> `upscale_value` | |
- `save_meta` -> `upscale_multiple` | |
- `meta_scheme` -> `save_metadata_to_images` | |
- `save_extension` -> `output_format` | |
- 移除部分参数名 | |
- `save_name` | |
- 增加部分参数 | |
- `input_image_checkbox` | |
- `current_tab` | |
- `generate_image_grid` | |
- `preset` | |
- `stream_output` | |
- 合并部分参数 | |
- `outpaint_distance_left,right,top,bottom` 四个参数合并为 `outpaint_distance` | |
## 三种返回示例 | |
### 异步任务 | |
在参数中指定 `async_process` 为 `True` | |
```python | |
import requests | |
import json | |
endpoint = "http://127.0.0.1:7866/v1/engine/generate/" | |
params = { | |
"prompt": "", | |
"negative_prompt": "", | |
"performance_selection": "Lightning", | |
"async_process": True, | |
"webhook_url": "" | |
} | |
res = requests.post( | |
url=endpoint, | |
data=json.dumps(params), | |
timeout=60 | |
) | |
print(res.json()) | |
``` | |
输出如下: | |
```python | |
{'id': -1, 'task_id': '85c10c81e9e2482d90a64c3704137d3a', 'req_params': {}, 'in_queue_mills': -1, 'start_mills': -1, 'finish_mills': -1, 'task_status': 'pending', 'progress': -1, 'preview': '', 'webhook_url': '', 'result': []} | |
``` | |
你可以通过 `task_id` 访问 `http://127.0.0.1:7866/tasks/{task_id}` 获取任务信息,如果该任务正在执行,返回信息中会包含 `preview` | |
返回数据示例: | |
```python | |
# 未开始 | |
{ | |
"id": -1, | |
"in_queue_mills": 1720085748199, | |
"finish_mills": null, | |
"progress": null, | |
"result": null, | |
"req_params": { | |
# 完整的请求参数 | |
... | |
}, | |
"task_id": "85c10c81e9e2482d90a64c3704137d3a", | |
"start_mills": null, | |
"task_status": null, | |
"webhook_url": "" | |
} | |
# 执行中 | |
{ | |
"id": -1, | |
"task_id": "85c10c81e9e2482d90a64c3704137d3a", | |
"req_params": { | |
... | |
}, | |
"in_queue_mills": 1720086131653, | |
"start_mills": 1720086131865, | |
"finish_mills": -1, | |
"task_status": "running", | |
"progress": 18, | |
"preview": "a long text", | |
"webhook_url": "", | |
"result": [] | |
} | |
# 已完成 | |
{ | |
"id": 71, | |
"in_queue_mills": 1720085748199, | |
"finish_mills": 1720085770046, | |
"progress": 100, | |
"result": [ | |
"http://127.0.0.1:7866/outputs/2024-07-04/2024-07-04_17-36-09_5201.png" | |
], | |
"req_params": { | |
... | |
}, | |
"task_id": "85c10c81e9e2482d90a64c3704137d3a", | |
"start_mills": 1720085748425, | |
"task_status": "finished", | |
"webhook_url": "" | |
} | |
``` | |
### 流式输出 | |
这是一个类似 LLM 流式输出的方式,你会持续收到来自服务器的信息,直到结束,参照上面的示例: | |
```python | |
import requests | |
import json | |
endpoint = "http://127.0.0.1:7866/v1/engine/generate/" | |
params = { | |
"prompt": "", | |
"negative_prompt": "", | |
"performance_selection": "Lightning", | |
"stream_output": True, | |
"webhook_url": "" | |
} | |
res = requests.post( | |
url=endpoint, | |
data=json.dumps(params), | |
stream=True, | |
timeout=60 | |
) | |
for line in res.iter_lines(): | |
if line: | |
print(line.decode('utf-8')) | |
``` | |
你会获得类似下面的输出: | |
```python | |
data: {"progress": 2, "preview": null, "message": "Loading models ...", "images": []} | |
data: | |
data: {"progress": 13, "preview": null, "message": "Preparing task 1/1 ...", "images": []} | |
data: | |
data: {"progress": 13, "preview": "...", 'message': 'Sampling step 1/4, image 1/1 ...', 'images': []} | |
data: | |
data: {"progress": 34, "preview": "...", 'message': 'Sampling step 2/4, image 1/1 ...', 'images': []} | |
data: | |
data: {"progress": 56, "preview": "...", 'message': 'Sampling step 3/4, image 1/1 ...', 'images': []} | |
data: | |
data: {"progress": 78, "preview": "...", 'message': 'Sampling step 4/4, image 1/1 ...', 'images': []} | |
data: | |
data: {"progress": 100, "preview": null, "message": "Saving image 1/1 to system ...", "images": []} | |
data: | |
data: {"progress": 100, "preview": null, "message": "Finished", "images": ["http://10.0.0.245:7866/outputs/2024-07-05/2024-07-05_09-31-10_1752.png"]} | |
data: | |
``` | |
我们在稍微修改下: | |
```python | |
import requests | |
import json | |
endpoint = "http://127.0.0.1:7866/v1/engine/generate/" | |
params = { | |
"prompt": "", | |
"negative_prompt": "", | |
"performance_selection": "Lightning", | |
"stream_output": True, | |
"webhook_url": "" | |
} | |
res = requests.post( | |
url=endpoint, | |
data=json.dumps(params), | |
stream=True, | |
timeout=60 | |
) | |
for line in res.iter_lines(chunk_size=8192): | |
line = line.decode('utf-8').split('\n')[0] | |
try: | |
json_data = json.loads(line[6:]) | |
if json_data["preview"] is not None: | |
json_data["preview"] = "..." | |
except json.decoder.JSONDecodeError: | |
continue | |
print(json_data) | |
``` | |
然后你就得到了一系列类似这样的输出: | |
```python | |
{'progress': 13, 'preview': None, 'message': 'Preparing task 1/1 ...', 'images': []} | |
{'progress': 13, 'preview': '...', 'message': 'Sampling step 1/4, image 1/1 ...', 'images': []} | |
{'progress': 34, 'preview': '...', 'message': 'Sampling step 2/4, image 1/1 ...', 'images': []} | |
{'progress': 56, 'preview': '...', 'message': 'Sampling step 3/4, image 1/1 ...', 'images': []} | |
{'progress': 78, 'preview': '...', 'message': 'Sampling step 4/4, image 1/1 ...', 'images': []} | |
{'progress': 100, 'preview': None, 'message': 'Saving image 1/1 to system ...', 'images': []} | |
{'progress': 100, 'preview': None, 'message': 'Finished', 'images': ['http://10.0.0.245:7866/outputs/2024-07-05/2024-07-05_10-02-22_2536.png']} | |
``` | |
这还挺适合前端套壳用的(可惜我完全搞不懂前端,要不高低套一个),比如我用 AI 生成了一个 [example.html](./docs/example.html) ,服务启动后点击 `Generate` 按钮,你就会得到一个有预览、有进度的生成过程。 | |
### 二进制输出 | |
这个就简单了,它就是返回一张图片,不过需要在请求时将 `async_process` 和 `stream_output` 同时指定为 `false`,此时 `image_number` 强制为 `1` | |
```python | |
import requests | |
import json | |
from PIL import Image | |
from io import BytesIO | |
import matplotlib.pyplot as plt | |
endpoint = "http://127.0.0.1:7866/v1/engine/generate/" | |
params = { | |
"prompt": "", | |
"negative_prompt": "", | |
"performance_selection": "Lightning", | |
"async_process": False, | |
"stream_output": False, | |
"webhook_url": "" | |
} | |
res = requests.post( | |
url=endpoint, | |
data=json.dumps(params), | |
timeout=60 | |
) | |
image_stream = BytesIO(res.content) | |
image = Image.open(image_stream) | |
plt.imshow(image) | |
plt.show() | |
``` | |
# 任务查询 | |
和 [Fooocus-API](https://github.com/mrhan1993/Fooocus-API) 不同的是历史记录的保存将是自动进行的,没有保留开关。数据库使用 `SQLite3` 并存放在 `outputs/db.sqlite3` 中。同时吸取了上次的教训,极大简化了表结构,将请求参数作为 JSON 存放在 `req_params` 字段。为了降低读写,仅在任务进入队列时和完成后进行数据库操作。其仅作为生成记录使用,任务状态的追踪会在内存中完成。 | |
此外,该版本会保留输入图像,上传的图像会计算哈希值并保存在 `inputs` 目录,数据库中的 `req_params` 会将图片参数替换为 `url` 信息进行保存,这意味着更完整的历史记录保存,无论是文生图还是图生图又或者是其他 | |
## /tasks | |
这是个复合接口,但其返回格式是固定的,该接口总是会返回下面格式的 JSON 数据,无论参数如何指定 | |
```python | |
{ | |
"history": [], | |
"current": [], # 尽管是个列表,但其中不会超过一个元素。 | |
"pending": [] | |
} | |
``` | |
所有的元素其格式都是和数据库中的 scheme 匹配的,除了 `current` 会多一个 `preview` ,比如下图: | |
 | |
该接口还支持更加精细的用法,参考下面的示例: | |
> 该接口返回格式总是固定的,不管参数如何调整 | |
```shell | |
curl http://localhost:7866/tasks?query=current | |
# 仅返回当前任务,query 参数还可以指定的值为 'all', 'pending', 'history' | |
curl http://localhost:7866/tasks?query=history&page=3&page_size=5 | |
# history 和 pending 支持分页和页面大小 | |
curl http://localhost:7866/tasks?query=history&start_at=2024-07-03T12:22:30 | |
# 你可以指定一个时间范围进行查询,这会返回该时间段的所有记录。时间格式是 ISO8601,如果你不指定 end_at 则截止当前时间 | |
curl http://localhost:7866/tasks?query=history&start_at=2024-07-03T12:22:30&action=delete | |
# 删除指定时间范围的任务,数据库记录和生成文件。目前仅支持这一种删除方法(不会删除 input 文件)。 | |
curl http://localhost:7866/tasks/38ba92b188a64233a7336218cd902865 | |
# 这会返回该任务的信息,但它只是一个字典。相当于从上面列表中取出指定 task_id 的任务,如果它刚好是当前任务,那它也会包含 preview | |
``` |