Spaces:
Running
Running
File size: 13,651 Bytes
dbca390 288f6d2 dbca390 dadcb61 288f6d2 dbca390 288f6d2 dbca390 03ba989 dbca390 03ba989 dbca390 dadcb61 dbca390 dadcb61 03ba989 dadcb61 03ba989 dadcb61 03ba989 dadcb61 03ba989 dbca390 03ba989 dbca390 dadcb61 dbca390 dadcb61 dbca390 dadcb61 dbca390 03ba989 dbca390 03ba989 dbca390 03ba989 dbca390 03ba989 dadcb61 03ba989 dadcb61 03ba989 dadcb61 03ba989 dadcb61 03ba989 dadcb61 dbca390 03ba989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 |
from document_to_gloss import DocumentToASLConverter
from vectorizer import Vectorizer
from video_gen import create_multi_stitched_video
import gradio as gr
import asyncio
import re
import boto3
import os
from botocore.config import Config
from dotenv import load_dotenv
import requests
import tempfile
import uuid
import base64
# Load environment variables from .env file
load_dotenv()
# Load R2/S3 environment secrets
R2_ASL_VIDEOS_URL = os.environ.get("R2_ASL_VIDEOS_URL")
R2_ENDPOINT = os.environ.get("R2_ENDPOINT")
R2_ACCESS_KEY_ID = os.environ.get("R2_ACCESS_KEY_ID")
R2_SECRET_ACCESS_KEY = os.environ.get("R2_SECRET_ACCESS_KEY")
# Validate that required environment variables are set
if not all([R2_ASL_VIDEOS_URL, R2_ENDPOINT, R2_ACCESS_KEY_ID, R2_SECRET_ACCESS_KEY]):
raise ValueError(
"Missing required R2 environment variables. "
"Please check your .env file."
)
title = "AI-SL"
description = "Convert text to ASL!"
article = ("<p style='text-align: center'><a href='https://github.com/deenasun' "
"target='_blank'>Deena Sun on Github</a></p>")
inputs = gr.File(label="Upload Document (pdf, txt, docx, or epub)")
outputs = [
gr.JSON(label="Processing Results"),
gr.Video(label="ASL Video Output"),
gr.HTML(label="Download Link")
]
asl_converter = DocumentToASLConverter()
vectorizer = Vectorizer()
session = boto3.session.Session()
s3 = session.client(
service_name='s3',
region_name='auto',
endpoint_url=R2_ENDPOINT,
aws_access_key_id=R2_ACCESS_KEY_ID,
aws_secret_access_key=R2_SECRET_ACCESS_KEY,
config=Config(signature_version='s3v4')
)
def clean_gloss_token(token):
"""
Clean a gloss token by removing brackets, newlines, and extra whitespace
"""
# Remove brackets and newlines
cleaned = re.sub(r'[\[\]\n\r]', '', token)
# Remove extra whitespace
cleaned = re.sub(r'\s+', ' ', cleaned).strip()
cleaned = cleaned.lower()
return cleaned
def upload_video_to_r2(video_path, bucket_name="asl-videos"):
"""
Upload a video file to R2 and return a public URL
"""
try:
# Generate a unique filename
file_extension = os.path.splitext(video_path)[1]
unique_filename = f"{uuid.uuid4()}{file_extension}"
# Upload to R2
with open(video_path, 'rb') as video_file:
s3.upload_fileobj(
video_file,
bucket_name,
unique_filename,
ExtraArgs={'ACL': 'public-read'}
)
# Replace the endpoint with the domain for uploading
public_domain = R2_ENDPOINT.replace('https://', '').split('.')[0]
video_url = f"https://{public_domain}.r2.cloudflarestorage.com/{bucket_name}/{unique_filename}"
print(f"Video uploaded to R2: {video_url}")
public_video_url = f"{R2_ASL_VIDEOS_URL}/{unique_filename}"
return public_video_url
except Exception as e:
print(f"Error uploading video to R2: {e}")
return None
def video_to_base64(video_path):
"""
Convert a video file to base64 string for direct download
"""
try:
with open(video_path, 'rb') as video_file:
video_data = video_file.read()
base64_data = base64.b64encode(video_data).decode('utf-8')
return f"data:video/mp4;base64,{base64_data}"
except Exception as e:
print(f"Error converting video to base64: {e}")
return None
def download_video_from_url(video_url):
"""
Download a video from a public R2 URL
Returns the local file path where the video is saved
"""
try:
# Create a temporary file with .mp4 extension
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.mp4')
temp_path = temp_file.name
temp_file.close()
# Download the video
print(f"Downloading video from: {video_url}")
response = requests.get(video_url, stream=True)
response.raise_for_status()
# Save to temporary file
with open(temp_path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
print(f"Video downloaded to: {temp_path}")
return temp_path
except Exception as e:
print(f"Error downloading video: {e}")
return None
def cleanup_temp_video(file_path):
"""
Clean up temporary video file
"""
try:
if file_path and os.path.exists(file_path):
os.unlink(file_path)
print(f"Cleaned up: {file_path}")
except Exception as e:
print(f"Error cleaning up file: {e}")
def process_text_to_gloss(text):
"""
Convert text directly to ASL gloss
"""
try:
# For text input, we can use a simpler approach or call the
# document converter with a temporary text file
import tempfile
# Create a temporary text file
with tempfile.NamedTemporaryFile(
mode='w', suffix='.txt', delete=False
) as temp_file:
temp_file.write(text)
temp_file_path = temp_file.name
# Use the existing document converter
gloss = asl_converter.convert_document(temp_file_path)
# Clean up the temporary file
os.unlink(temp_file_path)
return gloss
except Exception as e:
print(f"Error processing text: {e}")
return None
def process_input(input_data):
"""
Process either text input or file upload
input_data can be either a string (text) or a file object
"""
if input_data is None:
return None
# Check if it's a file object (has .name attribute)
if hasattr(input_data, 'name'):
# It's a file upload
print(f"Processing file: {input_data.name}")
return asl_converter.convert_document(input_data.name)
else:
# It's text input
print(f"Processing text input: "
f"{input_data[:100]}...")
return process_text_to_gloss(input_data)
async def parse_vectorize_and_search_unified(input_data):
"""
Unified function that handles both text and file inputs
"""
print(f"Input type: {type(input_data)}")
# Process the input to get gloss
gloss = process_input(input_data)
if not gloss:
return {
"status": "error",
"message": "Failed to process input"
}, None, ""
print("ASL", gloss)
# Split by spaces and clean each token
gloss_tokens = gloss.split()
cleaned_tokens = []
for token in gloss_tokens:
cleaned = clean_gloss_token(token)
if cleaned: # Only add non-empty tokens
cleaned_tokens.append(cleaned)
print("Cleaned tokens:", cleaned_tokens)
videos = []
video_files = [] # Store local file paths for stitching
for g in cleaned_tokens:
print(f"Processing {g}")
try:
result = await vectorizer.vector_query_from_supabase(query=g)
print("result", result)
if result.get("match", False):
video_url = result["video_url"]
videos.append(video_url)
# Download the video
local_path = download_video_from_url(video_url)
if local_path:
video_files.append(local_path)
except Exception as e:
print(f"Error processing {g}: {e}")
continue
# Create stitched video if we have multiple videos
stitched_video_path = None
if len(video_files) > 1:
try:
print(f"Creating stitched video from {len(video_files)} videos...")
stitched_video_path = tempfile.NamedTemporaryFile(
delete=False, suffix='.mp4'
).name
create_multi_stitched_video(video_files, stitched_video_path)
print(f"Stitched video created: {stitched_video_path}")
except Exception as e:
print(f"Error creating stitched video: {e}")
stitched_video_path = None
elif len(video_files) == 1:
# If only one video, just use it directly
stitched_video_path = video_files[0]
# Upload final video to R2 and get public URL
final_video_url = None
if stitched_video_path:
final_video_url = upload_video_to_r2(stitched_video_path)
# Clean up the local file after upload
cleanup_temp_video(stitched_video_path)
# Clean up individual video files after stitching
for video_file in video_files:
if video_file != stitched_video_path: # Don't delete the final output
cleanup_temp_video(video_file)
# Create download link HTML
download_html = ""
if final_video_url:
download_html = f"""
<div style="text-align: center; padding: 20px;">
<h3>Download Your ASL Video</h3>
<a href="{final_video_url}" download="asl_video.mp4"
style="background-color: #4CAF50; color: white;
padding: 12px 24px; text-decoration: none;
border-radius: 4px; display: inline-block;">
Download Video
</a>
<p style="margin-top: 10px; color: #666;">
<small>Right-click and "Save As" if the download doesn't
start automatically</small>
</p>
</div>
"""
return {
"status": "success",
"videos": videos,
"video_count": len(videos),
"gloss": gloss,
"cleaned_tokens": cleaned_tokens,
"final_video_url": final_video_url
}, final_video_url, download_html
def parse_vectorize_and_search_unified_sync(input_data):
return asyncio.run(parse_vectorize_and_search_unified(input_data))
def predict_unified(input_data):
"""
Unified prediction function that handles both text and file inputs
"""
try:
if input_data is None:
return {
"status": "error",
"message": "Please provide text or upload a document"
}, None, ""
# Use the unified processing function
result = parse_vectorize_and_search_unified_sync(input_data)
return result
except Exception as e:
print(f"Error in predict_unified function: {e}")
return {
"status": "error",
"message": f"An error occurred: {str(e)}"
}, None, ""
# Create the Gradio interface
def create_interface():
"""Create and configure the Gradio interface"""
with gr.Blocks(title=title) as demo:
gr.Markdown(f"# {title}")
gr.Markdown(description)
with gr.Row():
with gr.Column():
# Input section
gr.Markdown("## Input Options")
# Text input
gr.Markdown("### Option 1: Enter Text")
text_input = gr.Textbox(
label="Enter text to convert to ASL",
placeholder="Type or paste your text here...",
lines=5,
max_lines=10
)
gr.Markdown("### Option 2: Upload Document")
file_input = gr.File(
label="Upload Document (pdf, txt, docx, or epub)",
file_types=[".pdf", ".txt", ".docx", ".epub"]
)
# Processing options
gr.Markdown("## Processing Options")
use_r2 = gr.Checkbox(
label="Use Cloud Storage (R2)",
value=True,
info=("Upload video to cloud storage for "
"persistent access")
)
process_btn = gr.Button(
"Generate ASL Video",
variant="primary"
)
with gr.Column():
# Output section
gr.Markdown("## Results")
json_output = gr.JSON(label="Processing Results")
video_output = gr.Video(label="ASL Video Output")
download_html = gr.HTML(label="Download Link")
# Handle the processing
def process_inputs(text, file, use_r2_storage):
# Determine which input to use
if text and text.strip():
# Use text input
input_data = text.strip()
elif file is not None:
# Use file input
input_data = file
else:
# No input provided
return {
"status": "error",
"message": "Please provide either text or upload a file"
}, None, ""
# Process using the unified function
return predict_unified(input_data)
process_btn.click(
fn=process_inputs,
inputs=[text_input, file_input, use_r2],
outputs=[json_output, video_output, download_html]
)
# Footer
gr.Markdown(article)
return demo
# For Hugging Face Spaces, use the Blocks interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True # Set to True for local testing with public URL
)
|