LISA-AVS-demo / chat.py
derektan
Initial clean commit for Hugging Face
1faad26
###############################
# chat.py
# Inference for LISA (terminal-based)
###############################
import argparse
import os
import sys
import cv2
from matplotlib import pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, BitsAndBytesConfig, CLIPImageProcessor
from model.LISA import LISAForCausalLM
from model.llava import conversation as conversation_lib
from model.llava.mm_utils import tokenizer_image_token
from model.segment_anything.utils.transforms import ResizeLongestSide
from utils.utils import (DEFAULT_IM_END_TOKEN, DEFAULT_IM_START_TOKEN,
DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX)
def parse_args(args):
parser = argparse.ArgumentParser(description="LISA chat")
parser.add_argument("--version", default="xinlai/LISA-13B-llama2-v1")
parser.add_argument("--vis_save_path", default="./vis_output", type=str)
parser.add_argument(
"--precision",
default="bf16",
type=str,
choices=["fp32", "bf16", "fp16"],
help="precision for inference",
)
parser.add_argument("--image_size", default=1024, type=int, help="image size")
parser.add_argument("--model_max_length", default=512, type=int)
parser.add_argument("--lora_r", default=8, type=int)
parser.add_argument(
"--vision-tower", default="openai/clip-vit-large-patch14", type=str
)
parser.add_argument("--local-rank", default=0, type=int, help="node rank")
parser.add_argument("--load_in_8bit", action="store_true", default=False)
parser.add_argument("--load_in_4bit", action="store_true", default=False)
parser.add_argument("--use_mm_start_end", action="store_true", default=True)
parser.add_argument(
"--conv_type",
default="llava_v1",
type=str,
choices=["llava_v1", "llava_llama_2"],
)
return parser.parse_args(args)
def preprocess(
x,
pixel_mean=torch.Tensor([123.675, 116.28, 103.53]).view(-1, 1, 1),
pixel_std=torch.Tensor([58.395, 57.12, 57.375]).view(-1, 1, 1),
img_size=1024,
) -> torch.Tensor:
"""Normalize pixel values and pad to a square input."""
# Normalize colors
x = (x - pixel_mean) / pixel_std
# Pad
h, w = x.shape[-2:]
padh = img_size - h
padw = img_size - w
x = F.pad(x, (0, padw, 0, padh))
return x
def main(args):
args = parse_args(args)
os.makedirs(args.vis_save_path, exist_ok=True)
# NOTE: NO NEED?
# if args.version == "BigData-KSU/RS-llava-v1.5-7b-LoRA":
# tokenizer_base = 'Intel/neural-chat-7b-v3-3'
# else:
# tokenizer_base = args.version
# Create model
tokenizer = AutoTokenizer.from_pretrained(
args.version, # tokenizer_base?
cache_dir=None,
model_max_length=args.model_max_length,
padding_side="right",
use_fast=False,
)
tokenizer.pad_token = tokenizer.unk_token
# num_added_tokens = tokenizer.add_tokens("[SEG]") # NOTE: NO NEED?
args.seg_token_idx = tokenizer("[SEG]", add_special_tokens=False).input_ids[0]
# NOTE: NO NEED?
# if args.use_mm_start_end:
# tokenizer.add_tokens(
# [DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True
# )
torch_dtype = torch.float32
if args.precision == "bf16":
torch_dtype = torch.bfloat16
elif args.precision == "fp16":
torch_dtype = torch.half
kwargs = {"torch_dtype": torch_dtype}
if args.load_in_4bit:
kwargs.update(
{
"torch_dtype": torch.half,
"load_in_4bit": True,
"quantization_config": BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_skip_modules=["visual_model"],
),
}
)
elif args.load_in_8bit:
kwargs.update(
{
"torch_dtype": torch.half,
"quantization_config": BitsAndBytesConfig(
llm_int8_skip_modules=["visual_model"],
load_in_8bit=True,
),
}
)
model = LISAForCausalLM.from_pretrained(
args.version, low_cpu_mem_usage=True, vision_tower=args.vision_tower, seg_token_idx=args.seg_token_idx, **kwargs
)
model.config.eos_token_id = tokenizer.eos_token_id
model.config.bos_token_id = tokenizer.bos_token_id
model.config.pad_token_id = tokenizer.pad_token_id
model.get_model().initialize_vision_modules(model.get_model().config)
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(dtype=torch_dtype)
if args.precision == "bf16":
model = model.bfloat16().cuda()
elif (
args.precision == "fp16" and (not args.load_in_4bit) and (not args.load_in_8bit)
):
vision_tower = model.get_model().get_vision_tower()
model.model.vision_tower = None
import deepspeed
model_engine = deepspeed.init_inference(
model=model,
dtype=torch.half,
replace_with_kernel_inject=True,
replace_method="auto",
)
model = model_engine.module
model.model.vision_tower = vision_tower.half().cuda()
elif args.precision == "fp32":
model = model.float().cuda()
vision_tower = model.get_model().get_vision_tower()
vision_tower.to(device=args.local_rank)
clip_image_processor = CLIPImageProcessor.from_pretrained(model.config.vision_tower)
transform = ResizeLongestSide(args.image_size)
model.eval()
while True:
conv = conversation_lib.conv_templates[args.conv_type].copy()
conv.messages = []
question = input("Please input your prompt: ")
prompt = DEFAULT_IMAGE_TOKEN + "\n" + question
if args.use_mm_start_end:
replace_token = (
DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
)
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
conv.append_message(conv.roles[0], prompt)
conv.append_message(conv.roles[1], "")
prompt = conv.get_prompt()
image_path = input("Please input the image path: ")
if not os.path.exists(image_path):
print("File not found in {}".format(image_path))
continue
image_np = cv2.imread(image_path)
image_np = cv2.cvtColor(image_np, cv2.COLOR_BGR2RGB)
original_size_list = [image_np.shape[:2]]
image_clip = (
clip_image_processor.preprocess(image_np, return_tensors="pt")[
"pixel_values"
][0]
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image_clip = image_clip.bfloat16()
elif args.precision == "fp16":
image_clip = image_clip.half()
else:
image_clip = image_clip.float()
image = transform.apply_image(image_np)
resize_list = [image.shape[:2]]
image = (
preprocess(torch.from_numpy(image).permute(2, 0, 1).contiguous())
.unsqueeze(0)
.cuda()
)
if args.precision == "bf16":
image = image.bfloat16()
elif args.precision == "fp16":
image = image.half()
else:
image = image.float()
input_ids = tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
input_ids = input_ids.unsqueeze(0).cuda()
output_ids, pred_masks = model.evaluate(
image_clip,
image,
input_ids,
resize_list,
original_size_list,
max_new_tokens=512,
tokenizer=tokenizer,
)
output_ids = output_ids[0][output_ids[0] != IMAGE_TOKEN_INDEX]
text_output = tokenizer.decode(output_ids, skip_special_tokens=False)
text_output = text_output.replace("\n", "").replace(" ", " ")
print("text_output: ", text_output)
# for i, pred_mask in enumerate(pred_masks):
# if pred_mask.shape[0] == 0:
# continue
# print("min pre_mask: ", pred_mask.min())
# print("max pre_mask: ", pred_mask.max())
# pred_mask = pred_mask.detach().cpu().numpy()[0]
# pred_mask = pred_mask > 0
# save_path = "{}/{}_mask_{}.jpg".format(
# args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
# )
# cv2.imwrite(save_path, pred_mask * 100)
# print("{} has been saved.".format(save_path))
# save_path = "{}/{}_masked_img_{}.jpg".format(
# args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
# )
# save_img = image_np.copy()
# save_img[pred_mask] = (
# image_np * 0.5
# + pred_mask[:, :, None].astype(np.uint8) * np.array([255, 0, 0]) * 0.5
# )[pred_mask]
# save_img = cv2.cvtColor(save_img, cv2.COLOR_RGB2BGR)
# cv2.imwrite(save_path, save_img)
# print("{} has been saved.".format(save_path))
for i, pred_mask in enumerate(pred_masks):
if pred_mask.shape[0] == 0:
continue
# ------------------------------------------------------------------
# 1) Prepare / detach / copy stuff
# ------------------------------------------------------------------
# Convert torch tensor -> NumPy
pred_mask_np = pred_mask.detach().cpu().numpy()[0]
# Convert your image from RGB to a float NumPy array if needed
# (Adjust as necessary depending on your original image data type)
image_rgb = image_np.astype(np.float32) # shape (H, W, 3)
# ------------------------------------------------------------------
# 2) Create the Binary Mask & Overlaid Image (subplot #2)
# ------------------------------------------------------------------
# Binary threshold (> 0)
binary_mask = pred_mask_np > 0
# Make a copy of the original image for overlaying
masked_image = image_rgb.copy()
# Option A: Simple half-blend with red for the masked area
# We only modify pixels where binary_mask is True
red_color = np.array([255, 0, 0], dtype=np.float32)
blended_red = image_rgb[binary_mask] * 0.5 + red_color * 0.5
masked_image[binary_mask] = blended_red
# ------------------------------------------------------------------
# 3) Create the Raw Mask (subplot #3) + Colorbar
# ------------------------------------------------------------------
min_val = float(pred_mask_np.min())
max_val = float(pred_mask_np.max())
# Avoid division by zero if min_val == max_val
denom = (max_val - min_val) if (max_val - min_val) != 0 else 1e-8
# Normalize to [0, 1]
normalized_mask = (pred_mask_np - min_val) / denom
# ------------------------------------------------------------------
# 4) Plot everything with Matplotlib
# ------------------------------------------------------------------
fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(15, 5))
# (Left) Original Image
ax1.imshow(image_rgb.astype(np.uint8))
ax1.set_title("Original Image")
ax1.axis("off")
# (Middle) Binary Mask Overlaid
ax2.imshow(masked_image.astype(np.uint8))
ax2.set_title("Binary Mask (>0) in Red")
ax2.axis("off")
# (Right) Raw Mask with Colorbar
# Show the normalized mask in [0..1] range, but apply a color map
im3 = ax3.imshow(normalized_mask, cmap='jet', vmin=0, vmax=1)
ax3.set_title("Raw Mask (Continuous)")
ax3.axis("off")
# Add a colorbar to the third subplot
cbar = fig.colorbar(im3, ax=ax3, fraction=0.046, pad=0.04)
cbar.set_label("Normalized Mask Value")
# Add a main title (optional)
fig.suptitle(f"Question: {question}")
answer = text_output[text_output.find("ASSISTANT"):]
fig.text(0.5, 0.05, f"{answer}", ha='center', va='center')
# ------------------------------------------------------------------
# 5) Show the figure, then save after it’s closed
# ------------------------------------------------------------------
# When plt.show() returns, the figure is closed if interactive mode is off.
plt.show(block=True) # This pauses execution until the window is closed.
# Now save the figure
save_path = "{}/{}_matplotlib_{}.png".format(
args.vis_save_path, image_path.split("/")[-1].split(".")[0], i
)
fig.savefig(save_path)
print(f"Figure saved to: {save_path}")
# Finally close the figure to free memory
plt.close(fig)
if __name__ == "__main__":
main(sys.argv[1:])