Spaces:
Running
on
Zero
Running
on
Zero
File size: 45,301 Bytes
4f09ecf 0a3d091 2807645 0a3d091 2807645 14e5686 2807645 14e5686 2807645 14e5686 2807645 0a3d091 faa901b 0a3d091 eb3bad4 0a3d091 4d724e4 0c5b121 4d724e4 2807645 4d724e4 0a3d091 e5efc3c 0a3d091 4f09ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 |
#######################################################################
# Name: env.py
#
# - Reads and processes training and test maps (E.g. DungeonMaps)
# - Processes rewards, new frontiers given action
# - Updates a graph representation of environment for input into network
#######################################################################
import sys
import cv2
from matplotlib.colors import LogNorm, PowerNorm
if sys.modules['TRAINING']:
from parameter import *
else:
from test_parameter import *
import copy
import pandas as pd
import rasterio
from skimage import io
import matplotlib.pyplot as plt
import os
from skimage.measure import block_reduce
from sensor import *
from graph_generator import *
from node import *
from scipy.ndimage import label, find_objects
import matplotlib.image as mpimg
from matplotlib.colors import Normalize
# import matplotlib
# matplotlib.use("Agg") # <-- key line to avoid tkinter dependency
class Env():
def __init__(self, map_index, n_agent, k_size=20, plot=False, test=False, mask_index=None):
self.n_agent = n_agent
self.test = test
self.map_dir = GRIDMAP_SET_DIR
# Import environment gridmap
self.map_list = os.listdir(self.map_dir)
self.map_list.sort(reverse=True)
# NEW: Import segmentation utility map
self.seg_dir = MASK_SET_DIR
self.segmentation_mask, self.target_positions, self.target_found_idxs = None, [], []
self.segmentation_mask_list = os.listdir(self.seg_dir)
self.segmentation_mask_list.sort(reverse=True)
# Import target maps (if relevant)
if TARGETS_SET_DIR != "":
self.targets_map_list = os.listdir(TARGETS_SET_DIR)
self.targets_map_list.sort(reverse=True)
# # NEW: Find common files in both directories
# if TARGETS_SET_DIR != "":
# common_files = [file for file in self.map_list if file in self.segmentation_mask_list and file in self.targets_map_list]
# else:
# common_files = [file for file in self.map_list if file in self.segmentation_mask_list]
self.map_index = map_index % len(self.map_list)
if mask_index is not None:
self.mask_index = mask_index % len(self.segmentation_mask_list)
else:
self.mask_index = map_index % len(self.segmentation_mask_list)
# self.common_map_file = common_files[self.map_index]
# print("self.common_map_file: ", self.common_map_file)
# Import ground truth and segmentation mask
self.ground_truth, self.map_start_position = self.import_ground_truth(
os.path.join(self.map_dir, self.map_list[self.map_index]))# self.common_map_file))
self.ground_truth_size = np.shape(self.ground_truth) # (480, 640)
self.robot_belief = np.ones(self.ground_truth_size) * 127 # unexplored 127
self.downsampled_belief = None
self.old_robot_belief = copy.deepcopy(self.robot_belief)
self.coverage_belief = np.ones(self.ground_truth_size) * 127 # unexplored 127
# Import segmentation mask
mask_filename = self.segmentation_mask_list[self.mask_index]
self.segmentation_mask = self.import_segmentation_mask(
os.path.join(self.seg_dir, mask_filename))# self.common_map_file))
# print("mask_filename: ", mask_filename)
# Overwrite target positions if directory specified
self.gt_segmentation_mask = None
if self.test and TARGETS_SET_DIR != "":
self.gt_segmentation_mask = self.import_segmentation_mask(
os.path.join(TARGETS_SET_DIR, self.map_list[self.map_index])) # UNUSED - self.common_map_file))
# print("target_positions: ", self.target_positions)
# print("np.unique(self.segmentation_mask): ", np.unique(self.segmentation_mask))
self.segmentation_info_mask = None
self.gt_segmentation_info_mask = None
self.segmentation_info_mask_unnormalized = None
self.filtered_seg_info_mask = None
self.num_targets_found = 0
self.num_new_targets_found = 0
# # Link score masks to raw image files
# csv_file = pd.read_csv(RAW_IMG_PATH_DICT, header=None)
# img_score_paths = csv_file.iloc[:,2].tolist()
# raw_img_paths = csv_file.iloc[:,0].tolist()
# self.score_to_img_dict = {os.path.basename(img_score_path): raw_img_path for img_score_path, raw_img_path in zip(img_score_paths, raw_img_paths)}
self.resolution = 4
self.sensor_range = SENSOR_RANGE
self.explored_rate = 0
self.targets_found_rate = 0
self.info_gain = 0
self.total_info = 0
self.graph_generator = Graph_generator(map_size=self.ground_truth_size, sensor_range=self.sensor_range, k_size=k_size, plot=plot)
self.node_coords, self.graph, self.node_utility, self.guidepost = None, None, None, None
self.frontiers = None
self.start_positions = []
self.begin(self.map_start_position)
self.plot = plot
self.frame_files = []
def find_index_from_coords(self, position):
index = np.argmin(np.linalg.norm(self.node_coords - position, axis=1))
return index
def begin(self, start_position):
# self.robot_belief = self.update_robot_belief(robot_position, self.sensor_range, self.robot_belief,
# self.ground_truth)
self.robot_belief = self.ground_truth
self.downsampled_belief = block_reduce(self.robot_belief.copy(), block_size=(self.resolution, self.resolution),
func=np.min)
self.frontiers = self.find_frontier()
self.old_robot_belief = copy.deepcopy(self.robot_belief)
self.node_coords, self.graph, self.node_utility, self.guidepost = self.graph_generator.generate_graph(
self.robot_belief, self.frontiers)
# Find non-conflicting start positions
if FIX_START_POSITION:
coords_res_row = int(self.robot_belief.shape[0]/NUM_COORDS_HEIGHT)
coords_res_col = int(self.robot_belief.shape[1]/NUM_COORDS_WIDTH)
self.start_positions = [(int(self.robot_belief.shape[1]/2)-coords_res_col/2,int(self.robot_belief.shape[0]/2)-coords_res_row/2) for _ in range(self.n_agent)] # bottom-left corner
else:
nearby_coords = self.graph_generator.get_neighbors_grid_coords(start_position)
itr = 0
for i in range(self.n_agent):
if i == 0 or len(nearby_coords) == 0:
self.start_positions.append(start_position)
else:
idx = min(itr, len(nearby_coords)-1)
self.start_positions.append(nearby_coords[idx])
itr += 1
for i in range(len(self.start_positions)):
self.start_positions[i] = self.node_coords[self.find_index_from_coords(self.start_positions[i])]
self.coverage_belief = self.update_robot_belief(self.start_positions[i], self.sensor_range, self.coverage_belief,
self.ground_truth)
for start_position in self.start_positions:
self.graph_generator.route_node.append(start_position)
# Info map from ground truth
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
self.segmentation_info_mask = np.zeros((len(self.node_coords), 1))
self.gt_segmentation_info_mask = np.zeros((len(self.node_coords), 1))
for i, node_coord in enumerate(self.node_coords):
max_x = min(node_coord[0] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(node_coord[0] - int(math.ceil(rng_x)), 0)
max_y = min(node_coord[1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(node_coord[1] - int(math.ceil(rng_y)), 0)
# if np.any(self.segmentation_mask[min_y:max_y, min_x:max_x] == 255):
# self.segmentation_info_mask[i] = 1.0
# else:
# self.segmentation_info_mask[i] = 0.0
# self.segmentation_info_mask[i] = np.mean(self.segmentation_mask[min_y:max_y, min_x:max_x])
# self.segmentation_info_mask[i] = np.max(self.segmentation_mask[min_y:max_y, min_x:max_x])
if TARGETS_SET_DIR == "": # If targets combined with segmentation mask
exclude = {208} # Exclude target positions
else:
exclude = {}
self.segmentation_info_mask[i] = max(x for x in self.segmentation_mask[min_y:max_y, min_x:max_x].flatten() if x not in exclude) / 100.0
if self.gt_segmentation_mask is not None:
self.gt_segmentation_info_mask[i] = max(x for x in self.gt_segmentation_mask[min_y:max_y, min_x:max_x].flatten() if x not in exclude) / 100.0
# print("np.unique(self.segmentation_info_mask): ", np.unique(self.segmentation_info_mask))
self.filtered_seg_info_mask = copy.deepcopy(self.segmentation_info_mask)
# In case targets found at beginning...
done, num_targets_found = self.check_done()
self.num_targets_found = num_targets_found
def multi_robot_step(self, next_position_list, dist_list, travel_dist_list):
temp_frontiers = copy.deepcopy(self.frontiers)
reward_list = []
for dist, robot_position in zip(dist_list, next_position_list):
self.graph_generator.route_node.append(robot_position)
next_node_index = self.find_index_from_coords(robot_position)
self.graph_generator.nodes_list[next_node_index].set_visited()
# self.robot_belief = self.update_robot_belief(robot_position, self.sensor_range, self.robot_belief,
# self.ground_truth)
self.coverage_belief = self.update_robot_belief(robot_position, self.sensor_range, self.coverage_belief,
self.ground_truth)
self.robot_belief = self.ground_truth
self.downsampled_belief = block_reduce(self.robot_belief.copy(),
block_size=(self.resolution, self.resolution),
func=np.min)
frontiers = self.find_frontier()
#num_observed_frontiers = self.calculate_num_observed_frontiers(temp_frontiers, frontiers)
#temp_frontiers = frontiers
num_observed_frontiers = self.node_utility[next_node_index]
# individual_reward = num_observed_frontiers / 50 - dist / 64
individual_reward = -dist / 32 # 64
info_gain_reward = 0
robot_position_idx = self.find_index_from_coords(robot_position)
# if self.segmentation_info_mask[robot_position_idx] == 1.0 and self.guidepost[robot_position_idx] == 0.0:
# # print("High Info (Unvisited)")
# info_gain_reward = (HIGH_INFO_REWARD_RATIO * 1.5)
# elif self.segmentation_info_mask[robot_position_idx] == 0.0 and self.guidepost[robot_position_idx] == 0.0:
# # print("Low Info (Unvisited)")
# info_gain_reward = ((1-HIGH_INFO_REWARD_RATIO) * 1.5)
info_gain_reward = self.filtered_seg_info_mask[robot_position_idx][0] * 1.5
if self.guidepost[robot_position_idx] == 0.0:
info_gain_reward += 0.2
# print("info_gain_reward: ", info_gain_reward)
individual_reward += info_gain_reward
# print("dist / 64: ", dist / 64)
# print("info gain reward: ", info_gain_reward)
reward_list.append(individual_reward)
self.node_coords, self.graph, self.node_utility, self.guidepost = self.graph_generator.update_graph(self.robot_belief, self.old_robot_belief, frontiers, self.frontiers)
self.old_robot_belief = copy.deepcopy(self.robot_belief)
self.filtered_seg_info_mask = [info[0] if self.guidepost[i] == 0.0 else 0.0 for i, info in enumerate(self.segmentation_info_mask)]
self.filtered_seg_info_mask = np.expand_dims(np.array(self.filtered_seg_info_mask), axis=1)
num_observed_frontiers = self.calculate_num_observed_frontiers(self.frontiers, frontiers)
self.frontiers = frontiers
self.explored_rate = self.evaluate_exploration_rate()
done, num_targets_found = self.check_done()
self.num_new_targets_found = num_targets_found - self.num_targets_found
# #team_reward = sum(reward_list) / len(reward_list)
# # team_reward = num_observed_frontiers / 50
# team_reward = self.num_new_targets_found * 5.0
team_reward = 0.0
# # print("target found reward: ", self.num_new_targets_found * 5.0)
self.num_targets_found = num_targets_found
self.targets_found_rate = self.evaluate_targets_found_rate()
self.info_gain, self.total_info = self.evaluate_info_gain()
if done:
# team_reward += np.sum(self.robot_belief == 255) / sum(travel_dist_list)
team_reward += 40 # 20
for i in range(len(reward_list)):
reward_list[i] += team_reward
return reward_list, done
def import_ground_truth(self, map_index):
# occupied 1, free 255, unexplored 127
try:
# ground_truth = (io.imread(map_index, 1) * 255).astype(int)
ground_truth = (io.imread(map_index, 1)).astype(int)
if np.all(ground_truth == 0):
ground_truth = (io.imread(map_index, 1) * 255).astype(int)
except:
new_map_index = self.map_dir + '/' + self.map_list[0]
ground_truth = (io.imread(new_map_index, 1)).astype(int)
print('could not read the map_path ({}), hence skipping it and using ({}).'.format(map_index, new_map_index))
robot_location = np.nonzero(ground_truth == 208)
# print("robot_location: ", robot_location)
# print("np.array(robot_location)[1, 127]: ", np.array(robot_location)[1, 127])
robot_location = np.array([np.array(robot_location)[1, 127], np.array(robot_location)[0, 127]])
ground_truth = (ground_truth > 150)
ground_truth = ground_truth * 254 + 1
return ground_truth, robot_location
def import_segmentation_mask(self, map_index):
# occupied 1, free 255, unexplored 127
# mask = (io.imread(map_index, 1) * 255).astype(int) # NOTE: Cannot work well with seg mask self-generated
mask = cv2.imread(map_index).astype(int)
# print("np.unique(segmentation_mask): ", np.unique(mask))
# NOTE: Could contain mutiple start positions
# target_position = np.nonzero(mask == 208)
# target_positions = self.find_target_locations(mask)
# target_position = np.array([np.array(target_position)[1, 127], np.array(target_position)[0, 127]])
return mask #, target_positions
def find_target_locations(self, image_array, grey_value=208):
# Load the image
# image = Image.open(image_path)
# image_array = np.array(image)
# Identify pixels equal to the grey value
grey_pixels = np.where(image_array == grey_value)
# Create a binary array where grey pixels are marked as True
binary_array = np.zeros_like(image_array, dtype=bool)
binary_array[grey_pixels] = True
# Label connected components
labeled_array, num_features = label(binary_array)
# Find objects returns slices for each connected component
slices = find_objects(labeled_array)
# Calculate the center of each box
centers = []
for slice in slices:
row_center = (slice[0].start + slice[0].stop - 1) // 2
col_center = (slice[1].start + slice[1].stop - 1) // 2
centers.append((col_center, row_center)) # (y,x)
return centers
def free_cells(self):
index = np.where(self.ground_truth == 255)
free = np.asarray([index[1], index[0]]).T
return free
def update_robot_belief(self, robot_position, sensor_range, robot_belief, ground_truth):
robot_belief = sensor_work(robot_position, sensor_range, robot_belief, ground_truth)
return robot_belief
def check_done(self, robot_id=0):
""" All agnets to have explored most of the env map """
done = False
# for idx in range(self.n_agent):
# if np.sum(self.ground_truth == 255) - np.sum(self.all_robot_belief[idx][idx] == 255) > 40:
# done = False
# NEW: ADDITIONAL VLM SEARCH CRITERIA
num_targets_found = 0
self.target_found_idxs = []
for i, target in enumerate(self.target_positions):
if self.coverage_belief[target[1], target[0]] == 255: # 255:
num_targets_found += 1
self.target_found_idxs.append(i)
# free_cells_mask = self.all_robot_belief[robot_id][robot_id] == 255
# filtered_segmentation_mask = np.where(free_cells_mask, self.segmentation_mask, 0)
# targets = self.find_target_locations(filtered_segmentation_mask)
# print("num_targets_found: ", num_targets_found)
if TERMINATE_ON_TGTS_FOUND and num_targets_found >= len(self.target_positions):
done = True
if not TERMINATE_ON_TGTS_FOUND and np.sum(self.coverage_belief == 255) / np.sum(self.ground_truth == 255) >= 0.99:
done = True
return done, num_targets_found
def calculate_num_observed_frontiers(self, old_frontiers, frontiers):
frontiers_to_check = frontiers[:, 0] + frontiers[:, 1] * 1j
pre_frontiers_to_check = old_frontiers[:, 0] + old_frontiers[:, 1] * 1j
frontiers_num = np.intersect1d(frontiers_to_check, pre_frontiers_to_check).shape[0]
pre_frontiers_num = pre_frontiers_to_check.shape[0]
delta_num = pre_frontiers_num - frontiers_num
return delta_num
def calculate_reward(self, dist, frontiers):
reward = 0
reward -= dist / 64
frontiers_to_check = frontiers[:, 0] + frontiers[:, 1] * 1j
pre_frontiers_to_check = self.frontiers[:, 0] + self.frontiers[:, 1] * 1j
frontiers_num = np.intersect1d(frontiers_to_check, pre_frontiers_to_check).shape[0]
pre_frontiers_num = pre_frontiers_to_check.shape[0]
delta_num = pre_frontiers_num - frontiers_num
reward += delta_num / 50
return reward
def evaluate_exploration_rate(self):
# rate = np.sum(self.robot_belief == 255) / np.sum(self.ground_truth == 255)
rate = np.sum(self.coverage_belief == 255) / np.sum(self.ground_truth == 255)
return rate
def evaluate_targets_found_rate(self):
if len(self.target_positions) == 0:
return 0
else:
rate = self.num_targets_found / len(self.target_positions)
return rate
def evaluate_info_gain(self):
# print("self.segmentation_mask.shape: ", self.segmentation_mask.shape)
# coverage_belief = (self.coverage_belief == 255)
# print("coverage_belief.shape: ", coverage_belief.shape)
# print("np.unique(coverage_belief): ", np.unique(coverage_belief))
# print("np.count_nonzero(coverage_belief): ", np.count_nonzero(coverage_belief))
# print("np.count_zero(coverage_belief): ", coverage_belief.size - np.count_nonzero(coverage_belief))
# print("self.segmentation_mask[self.coverage_belief == 255].shape: ", self.segmentation_mask[self.coverage_belief == 255].shape)
if self.test and TARGETS_SET_DIR != "":
info_gained = np.sum(self.gt_segmentation_mask[self.coverage_belief == 255]) / 100.0
total_info = np.sum(self.gt_segmentation_mask) / 100.0
else:
info_gained = np.sum(self.segmentation_mask[self.coverage_belief == 255]) / 100.0
total_info = np.sum(self.segmentation_mask) / 100.0
return info_gained, total_info
def calculate_new_free_area(self):
old_free_area = self.old_robot_belief == 255
current_free_area = self.robot_belief == 255
new_free_area = (current_free_area.astype(np.int) - old_free_area.astype(np.int)) * 255
return new_free_area, np.sum(old_free_area)
def calculate_dist_path(self, path):
dist = 0
start = path[0]
end = path[-1]
for index in path:
if index == end:
break
dist += np.linalg.norm(self.node_coords[start] - self.node_coords[index])
start = index
return dist
def find_frontier(self):
y_len = self.downsampled_belief.shape[0]
x_len = self.downsampled_belief.shape[1]
mapping = self.downsampled_belief.copy()
belief = self.downsampled_belief.copy()
# 0-1 unknown area map
mapping = (mapping == 127) * 1
mapping = np.lib.pad(mapping, ((1, 1), (1, 1)), 'constant', constant_values=0)
fro_map = mapping[2:][:, 1:x_len + 1] + mapping[:y_len][:, 1:x_len + 1] + mapping[1:y_len + 1][:, 2:] + \
mapping[1:y_len + 1][:, :x_len] + mapping[:y_len][:, 2:] + mapping[2:][:, :x_len] + mapping[2:][:,
2:] + \
mapping[:y_len][:, :x_len]
ind_free = np.where(belief.ravel(order='F') == 255)[0]
ind_fron_1 = np.where(1 < fro_map.ravel(order='F'))[0]
ind_fron_2 = np.where(fro_map.ravel(order='F') < 8)[0]
ind_fron = np.intersect1d(ind_fron_1, ind_fron_2)
ind_to = np.intersect1d(ind_free, ind_fron)
map_x = x_len
map_y = y_len
x = np.linspace(0, map_x - 1, map_x)
y = np.linspace(0, map_y - 1, map_y)
t1, t2 = np.meshgrid(x, y)
points = np.vstack([t1.T.ravel(), t2.T.ravel()]).T
f = points[ind_to]
f = f.astype(int)
f = f * self.resolution
return f
def plot_env(self, n, path, step, travel_dist, robots_route, img_path_override=None, sat_path_override=None, msk_name_override=None, sound_id_override=None, colormap_mid_val=None):
# # TEMP
# if TAXABIND_TTA:
# # Save self.segmentation_info_mask as .npy file in gifs_path
# side_dim = int(np.sqrt(self.segmentation_info_mask.shape[0]))
# mask_viz = self.segmentation_info_mask.squeeze().reshape((side_dim, side_dim)).T
# np.save(os.path.join(path, f"seg_mask_step{step}.npy"), mask_viz)
plt.switch_backend('agg')
# plt.ion()
plt.cla()
color_list = ["r", "g", "c", "m", "y", "k"]
if TARGETS_SET_DIR == "" and not TAXABIND_TTA:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5))
else:
fig, ((ax1, ax2, ax3), (ax4, ax5, ax6)) = plt.subplots(2, 3, figsize=(12, 8))
### Fig1: Environment ###
msk_name = ""
if TAXABIND_TTA:
image = mpimg.imread(sat_path_override)
msk_name = msk_name_override
# else:
# plt.imshow(self.robot_belief, cmap='gray')
# ax1.imshow(self.coverage_belief, cmap='gray')
# image = mpimg.imread("Maps/real_maps/real/4259_masked_img_0.jpg")
# msk_name = self.map_list[self.map_index]
# raw_img_path = self.score_to_img_dict[msk_name]
# if "flair" in raw_img_path:
# with rasterio.open(raw_img_path) as src_img:
# image = src_img.read([1,2,3])
# image = np.transpose(image, (1, 2, 0))
# else:
# image = mpimg.imread(raw_img_path)
### Fig1: Environment ###
ax = ax1 # if TAXABIND_TTA else ax1
ax.imshow(image)
ax.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
ax.set_title("Image")
# if VIZ_GRAPH_EDGES:
# for i in range(len(self.graph_generator.x)):
# ax.plot(self.graph_generator.x[i], self.graph_generator.y[i], 'tan', zorder=1)
# # ax.scatter(self.node_coords[:, 0], self.node_coords[:, 1], c=self.node_utility, zorder=5)
# ax.scatter(self.node_coords[:, 0], self.node_coords[:, 1], c=self.segmentation_info_mask, zorder=5)
# ax.scatter(self.frontiers[:, 0], self.frontiers[:, 1], c='r', s=2, zorder=3)
for i, route in enumerate(robots_route):
robot_marker_color = color_list[i % len(color_list)]
xPoints = route[0]
yPoints = route[1]
ax.plot(xPoints, yPoints, c=robot_marker_color, linewidth=2)
# ax.plot(xPoints[-1], yPoints[-1], 'mo', markersize=8, zorder=10)
ax.plot(xPoints[-1], yPoints[-1], markersize=12, zorder=99, marker="^", ls="-", c=robot_marker_color, mec="black")
ax.plot(xPoints[0], yPoints[0], 'co', c=robot_marker_color, markersize=8, zorder=5)
# Sensor range
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
max_x = min(xPoints[-1] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(xPoints[-1] - int(math.ceil(rng_x)), 0)
max_y = min(yPoints[-1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(yPoints[-1] - int(math.ceil(rng_y)), 0)
ax.plot((min_x, min_x), (min_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((min_x, max_x), (max_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, max_x), (max_y, min_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, min_x), (min_y, min_y), c=robot_marker_color, linewidth=1)
### Fig2: Graph ###
ax = ax4 if TAXABIND_TTA else ax1
# ax.imshow(image)
ax.imshow(self.coverage_belief, cmap='gray')
ax.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
ax.set_title("Information Graph")
if VIZ_GRAPH_EDGES:
for i in range(len(self.graph_generator.x)):
ax.plot(self.graph_generator.x[i], self.graph_generator.y[i], 'tan', zorder=1)
# ax.scatter(self.node_coords[:, 0], self.node_coords[:, 1], c=self.node_utility, zorder=5)
# ax.scatter(self.node_coords[:, 0], self.node_coords[:, 1], c=self.segmentation_info_mask, zorder=5)
# filtered_seg_info_mask = [info[0] if self.guidepost[i] == 0.0 else 0.0 for i, info in enumerate(self.segmentation_info_mask)]
ax.scatter(self.node_coords[:, 0], self.node_coords[:, 1], c=self.filtered_seg_info_mask, zorder=5, s=8)
# ax.scatter(self.frontiers[:, 0], self.frontiers[:, 1], c='r', s=2, zorder=3)
for i, route in enumerate(robots_route):
robot_marker_color = color_list[i % len(color_list)]
xPoints = route[0]
yPoints = route[1]
ax.plot(xPoints, yPoints, c=robot_marker_color, linewidth=2)
# ax.plot(xPoints[-1], yPoints[-1], 'mo', markersize=8, zorder=10)
ax.plot(xPoints[-1], yPoints[-1], markersize=12, zorder=99, marker="^", ls="-", c=robot_marker_color, mec="black")
ax.plot(xPoints[0], yPoints[0], 'co', c=robot_marker_color, markersize=8, zorder=5)
# Sensor range
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
max_x = min(xPoints[-1] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(xPoints[-1] - int(math.ceil(rng_x)), 0)
max_y = min(yPoints[-1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(yPoints[-1] - int(math.ceil(rng_y)), 0)
ax.plot((min_x, min_x), (min_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((min_x, max_x), (max_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, max_x), (max_y, min_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, min_x), (min_y, min_y), c=robot_marker_color, linewidth=1)
# Plot target positions
for target in self.target_positions:
if self.coverage_belief[target[1], target[0]] == 255:
# ax.plot(target[0], target[1], 'go', markersize=8, zorder=99)
ax.plot(target[0], target[1], color='g', marker='x', linestyle='-', markersize=12, markeredgewidth=4, zorder=99)
else:
# ax.plot(target[0], target[1], 'ro', markersize=8, zorder=99)
ax.plot(target[0], target[1], color='r', marker='x', linestyle='-', markersize=12, markeredgewidth=4, zorder=99)
# ax.pause(0.1)
### Fig3: Segmentation Mask ###
ax = ax5 if TAXABIND_TTA else ax2
if TAXABIND_TTA and USE_CLIP_PREDS:
side_dim = int(np.sqrt(self.segmentation_info_mask.shape[0]))
mask_viz = self.segmentation_info_mask.squeeze().reshape((side_dim, side_dim)).T
scale_y = math.ceil(self.ground_truth_size[1] / side_dim)
scale_x = math.ceil(self.ground_truth_size[0] / side_dim)
upscaled_mask_viz = np.kron(mask_viz, np.ones((scale_y, scale_x))) # Integer scaling only
upscaled_mask_viz = upscaled_mask_viz[:self.ground_truth_size[1], :self.ground_truth_size[0]]
im = ax.imshow(upscaled_mask_viz, cmap="viridis")
ax.axis("off")
else:
im = ax.imshow(self.segmentation_mask.mean(axis=-1), cmap='viridis', vmin=0, vmax=100) # cmap='gray'
ax.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
ax.set_title(f"Predicted Mask (Normalized)")
for i, route in enumerate(robots_route):
robot_marker_color = color_list[i % len(color_list)]
xPoints = route[0]
yPoints = route[1]
ax.plot(xPoints, yPoints, c=robot_marker_color, linewidth=2)
# ax.plot(xPoints[-1], yPoints[-1], 'mo', markersize=8, zorder=10)
ax.plot(xPoints[-1], yPoints[-1], markersize=12, zorder=99, marker="^", ls="-", c=robot_marker_color, mec="black")
ax.plot(xPoints[0], yPoints[0], 'co', c=robot_marker_color, markersize=8, zorder=5)
# Sensor range
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
max_x = min(xPoints[-1] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(xPoints[-1] - int(math.ceil(rng_x)), 0)
max_y = min(yPoints[-1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(yPoints[-1] - int(math.ceil(rng_y)), 0)
ax.plot((min_x, min_x), (min_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((min_x, max_x), (max_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, max_x), (max_y, min_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, min_x), (min_y, min_y), c=robot_marker_color, linewidth=1)
# Add a colorbar
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.set_label("Normalized Probs")
# ax.pause(0.1)
### Fig4: Segmentation Mask ###
if TAXABIND_TTA and USE_CLIP_PREDS:
ax = ax6
side_dim = int(np.sqrt(self.segmentation_info_mask_unnormalized.shape[0]))
mask_viz = self.segmentation_info_mask_unnormalized.squeeze().reshape((side_dim, side_dim)).T
scale_y = math.ceil(self.ground_truth_size[1] / side_dim)
scale_x = math.ceil(self.ground_truth_size[0] / side_dim)
upscaled_mask_viz = np.kron(mask_viz, np.ones((scale_y, scale_x))) # Integer scaling only
upscaled_mask_viz = upscaled_mask_viz[:self.ground_truth_size[1], :self.ground_truth_size[0]]
max_val = 0.15 # TO CHANGE
mid_val = colormap_mid_val if colormap_mid_val is not None else 0.05
# mid_val = np.max(self.segmentation_info_mask_unnormalized)
norm = CustomNorm(vmin=0.0, vmax=max_val, mid=mid_val, lower_portion=0.8)
im = ax.imshow(upscaled_mask_viz, cmap="viridis", norm=norm) # norm=LogNorm(vmin=0.01, vmax=0.1))
# norm = PowerNorm(gamma=0.25, vmin=0.01, vmax=0.2)
# norm=LogNorm(vmin=0.01, vmax=0.2)
im = ax.imshow(upscaled_mask_viz, cmap="viridis", norm=norm) # norm=LogNorm(vmin=0.01, vmax=0.1))
ax.axis("off")
# else:
# im = ax.imshow(self.segmentation_mask.mean(axis=-1), cmap='viridis', vmin=0, vmax=100) # cmap='gray'
# ax.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
ax.set_title(f"Predicted Mask (Unnormalized)")
for i, route in enumerate(robots_route):
robot_marker_color = color_list[i % len(color_list)]
xPoints = route[0]
yPoints = route[1]
ax.plot(xPoints, yPoints, c=robot_marker_color, linewidth=2)
# ax.plot(xPoints[-1], yPoints[-1], 'mo', markersize=8, zorder=10)
ax.plot(xPoints[-1], yPoints[-1], markersize=12, zorder=99, marker="^", ls="-", c=robot_marker_color, mec="black")
ax.plot(xPoints[0], yPoints[0], 'co', c=robot_marker_color, markersize=8, zorder=5)
# Sensor range
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
max_x = min(xPoints[-1] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(xPoints[-1] - int(math.ceil(rng_x)), 0)
max_y = min(yPoints[-1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(yPoints[-1] - int(math.ceil(rng_y)), 0)
ax.plot((min_x, min_x), (min_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((min_x, max_x), (max_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, max_x), (max_y, min_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, min_x), (min_y, min_y), c=robot_marker_color, linewidth=1)
# Add a colorbar
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
if TAXABIND_TTA and USE_CLIP_PREDS:
cbar.set_ticks([0.0, mid_val, max_val])
cbar.set_label("Probs (Scaled by expectation)")
# Fog5: GT Mask
if TARGETS_SET_DIR != "":
ax = ax2
im = ax.imshow(self.gt_segmentation_mask.mean(axis=-1), cmap='viridis', vmin=0, vmax=100) # cmap='gray'
ax.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
ax.set_title(f"Ground Truth Mask")
for i, route in enumerate(robots_route):
robot_marker_color = color_list[i % len(color_list)]
xPoints = route[0]
yPoints = route[1]
ax.plot(xPoints, yPoints, c=robot_marker_color, linewidth=2)
# ax.plot(xPoints[-1], yPoints[-1], 'mo', markersize=8, zorder=10)
ax.plot(xPoints[-1], yPoints[-1], markersize=12, zorder=99, marker="^", ls="-", c=robot_marker_color, mec="black")
ax.plot(xPoints[0], yPoints[0], 'co', c=robot_marker_color, markersize=8, zorder=5)
# Sensor range
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
max_x = min(xPoints[-1] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(xPoints[-1] - int(math.ceil(rng_x)), 0)
max_y = min(yPoints[-1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(yPoints[-1] - int(math.ceil(rng_y)), 0)
ax.plot((min_x, min_x), (min_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((min_x, max_x), (max_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, max_x), (max_y, min_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, min_x), (min_y, min_y), c=robot_marker_color, linewidth=1)
# Add a colorbar
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.set_label("Normalized Mask Value")
# ax4.pause(0.1)
### Fig6: Segmentation Mask (GT) ###
if TAXABIND_TTA:
ax = ax3
image = mpimg.imread(img_path_override)
ax.imshow(image)
ax.set_title("Ground Image")
ax.axis("off")
sound_id = sound_id_override if sound_id_override is not None else "-1"
plt.suptitle('Targets Found: {}/{} Coverage ratio: {:.4g} Travel Dist: {:.4g} Info Gain: {:.4g}% \n ({}) \n (Sound ID: {})'.format(self.num_targets_found, \
len(self.target_positions), self.explored_rate, travel_dist, (100*self.info_gain/self.total_info), msk_name,
sound_id))
plt.tight_layout()
plt.savefig('{}/{}_{}_samples.png'.format(path, n, step, dpi=100))
# plt.show()
frame = '{}/{}_{}_samples.png'.format(path, n, step)
self.frame_files.append(frame)
plt.close()
####################
# ADDED: For app.py
####################
def plot_heatmap(self, save_dir, step, travel_dist, robots_route=None):
"""Plot only the segmentation heatmap and save it as ``{step}.png`` in
``save_dir``. This lightweight helper is meant for asynchronous
streaming in the Gradio demo when full `plot_env` is too heavy.
Parameters
----------
save_dir : str
Directory to save the generated PNG file.
step : int
Current timestep; becomes the filename ``{step}.png``.
robots_route : list | None
Optional list of routes (xPoints, yPoints) to overlay.
Returns
-------
str
Full path to the generated PNG file.
"""
import os
plt.switch_backend('agg')
# Do not clear the global figure state in case it interferes with
# the current figure. Each call creates its own Figure object that
# we close explicitly at the end, so a global clear is unnecessary
# and may break concurrent drawing.
# plt.cla()
color_list = ["r", "g", "c", "m", "y", "k"]
fig, ax = plt.subplots(1, 1, figsize=(6, 6))
# Select the mask to visualise
# if TAXABIND_TTA and USE_CLIP_PREDS:
side_dim = int(np.sqrt(self.segmentation_info_mask.shape[0]))
mask_viz = self.segmentation_info_mask.squeeze().reshape((side_dim, side_dim)).T
# Properly map image to pixel coordinates and keep limits fixed
H, W = self.ground_truth_size # rows (y), cols (x)
im = ax.imshow(
mask_viz,
cmap="viridis",
origin="upper",
extent=[0, W, H, 0], # x: 0..W, y: H..0 (origin at top-left)
interpolation="nearest", # keep cell edges sharp & aligned
zorder=0,
)
ax.set_xlim(0, W)
ax.set_ylim(H, 0)
ax.set_axis_off() # hide ticks but keep limits
# else:
# im = ax.imshow(self.segmentation_mask.mean(axis=-1), cmap='viridis', vmin=0, vmax=100)
# ax.axis((0, self.ground_truth_size[1], self.ground_truth_size[0], 0))
# Optionally overlay robot paths
if robots_route is not None:
for i, route in enumerate(robots_route):
robot_marker_color = color_list[i % len(color_list)]
xPoints, yPoints = route
ax.plot(xPoints, yPoints, c=robot_marker_color, linewidth=2)
ax.plot(xPoints[-1], yPoints[-1], markersize=12, zorder=99, marker="^", ls="-", c=robot_marker_color, mec="black")
ax.plot(xPoints[0], yPoints[0], 'co', c=robot_marker_color, markersize=8, zorder=5)
# Plot target positions
for target in self.target_positions:
if self.coverage_belief[target[1], target[0]] == 255:
# ax.plot(target[0], target[1], 'go', markersize=8, zorder=99)
ax.plot(target[0], target[1], color='g', marker='x', linestyle='-', markersize=12, markeredgewidth=4, zorder=99)
else:
# ax.plot(target[0], target[1], 'ro', markersize=8, zorder=99)
ax.plot(target[0], target[1], color='r', marker='x', linestyle='-', markersize=12, markeredgewidth=4, zorder=99)
# Sensor range
rng_x = 0.5 * (self.ground_truth.shape[1] / NUM_COORDS_WIDTH)
rng_y = 0.5 * (self.ground_truth.shape[0] / NUM_COORDS_HEIGHT)
max_x = min(xPoints[-1] + int(math.ceil(rng_x)), self.ground_truth.shape[1])
min_x = max(xPoints[-1] - int(math.ceil(rng_x)), 0)
max_y = min(yPoints[-1] + int(math.ceil(rng_y)), self.ground_truth.shape[0])
min_y = max(yPoints[-1] - int(math.ceil(rng_y)), 0)
ax.plot((min_x, min_x), (min_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((min_x, max_x), (max_y, max_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, max_x), (max_y, min_y), c=robot_marker_color, linewidth=1)
ax.plot((max_x, min_x), (min_y, min_y), c=robot_marker_color, linewidth=1)
# Color bar
cbar = fig.colorbar(im, ax=ax, fraction=0.046, pad=0.04)
cbar.set_label("Normalized Probs")
# Change coverage to 1dp
plt.suptitle('Targets Found: {}/{} Coverage: {:.1f}% Steps: {}/{}'.format(
self.num_targets_found, \
len(self.target_positions),
self.explored_rate*100,
step+1,
NUM_EPS_STEPS),
y=0.94, # Closer to plot
)
plt.tight_layout()
os.makedirs(save_dir, exist_ok=True)
out_path = os.path.join(save_dir, f"{step}.png")
# Save atomically: write to temp file then move into place so the poller never sees a partial file.
tmp_path = out_path + ".tmp"
fig.savefig(tmp_path, dpi=100, format='png')
os.replace(tmp_path, out_path) # atomic on same filesystem
plt.close(fig)
return out_path
####################
class CustomNorm(Normalize):
"""
A custom normalization that allocates a larger fraction of the colormap
to the lower data range [vmin, mid] than to [mid, vmax].
Parameters
----------
vmin : float
Minimum data value
vmax : float
Maximum data value
mid : float
Midpoint in data where we switch from 'lower' to 'upper' mapping
lower_portion : float
Fraction of the colormap to allocate for [vmin, mid].
For example, 0.8 => 80% of colors for [vmin, mid], 20% for [mid, vmax].
clip : bool
Whether to clip data outside [vmin, vmax].
"""
def __init__(self, vmin=None, vmax=None, mid=0.05, lower_portion=0.8, clip=False):
self.mid = mid
self.lower_portion = lower_portion
super().__init__(vmin, vmax, clip)
def __call__(self, value, clip=None):
"""Forward transform: data -> [0..1] color space."""
vmin, vmax, mid = self.vmin, self.vmax, self.mid
lp = self.lower_portion
value = np.asarray(value, dtype=np.float64)
# Piecewise linear mapping:
# [vmin..mid] => [0..lp]
# [mid..vmax] => [lp..1]
normed = np.where(
value <= mid,
lp * (value - vmin) / (mid - vmin),
lp + (value - mid) / (vmax - mid) * (1 - lp)
)
return np.clip(normed, 0, 1)
def inverse(self, value):
"""
Inverse transform: [0..1] color space -> data space.
Matplotlib's colorbar calls this to place ticks correctly.
"""
vmin, vmax, mid = self.vmin, self.vmax, self.mid
lp = self.lower_portion
value = np.asarray(value, dtype=np.float64)
# For color space [0..lp], invert to [vmin..mid]
# For color space [lp..1], invert to [mid..vmax]
below = (value <= lp)
above = ~below
# Allocate array for results
data = np.zeros_like(value, dtype=np.float64)
# Invert lower segment
data[below] = vmin + (value[below] / lp) * (mid - vmin)
# Invert upper segment
data[above] = mid + ((value[above] - lp) / (1 - lp)) * (vmax - mid)
return data
|