Spaces:
Running
on
Zero
Running
on
Zero
derektan
Init new app to handle planning. Fresh import from 27fe831777c12b25e504dd14e5b661742bdecce6 from VLM-Search
4f09ecf
####################################################################### | |
# Name: robot.py | |
# | |
# - Stores S(t), A(t), R(t), S(t+1) | |
####################################################################### | |
from copy import deepcopy | |
import torch | |
class Robot: | |
def __init__(self, robot_id, position, plot=False): | |
self.robot_id = robot_id | |
self.plot = plot | |
self.travel_dist = 0 | |
self.robot_position = position | |
self.observations = None | |
self.trajectory_coords = [] | |
self.targets_found_on_path = [] | |
self.episode_buffer = [] | |
for i in range(15): | |
self.episode_buffer.append([]) | |
if self.plot: | |
# initialize the route | |
self.xPoints = [self.robot_position[0]] | |
self.yPoints = [self.robot_position[1]] | |
def save_observations(self, observations): | |
node_inputs, edge_inputs, current_index, node_padding_mask, edge_padding_mask, edge_mask = observations | |
self.episode_buffer[0] += deepcopy(node_inputs).to('cpu') | |
self.episode_buffer[1] += deepcopy(edge_inputs).to('cpu') | |
self.episode_buffer[2] += deepcopy(current_index).to('cpu') | |
self.episode_buffer[3] += deepcopy(node_padding_mask).to('cpu') | |
self.episode_buffer[4] += deepcopy(edge_padding_mask).to('cpu') | |
self.episode_buffer[5] += deepcopy(edge_mask).to('cpu') | |
def save_action(self, action_index): | |
self.episode_buffer[6] += action_index.unsqueeze(0).unsqueeze(0) | |
def save_reward_done(self, reward, done): | |
self.episode_buffer[7] += deepcopy(torch.FloatTensor([[[reward]]])).to('cpu') | |
self.episode_buffer[8] += deepcopy(torch.tensor([[[(int(done))]]])).to('cpu') | |
if self.plot: | |
self.xPoints.append(self.robot_position[0]) | |
self.yPoints.append(self.robot_position[1]) | |
def save_next_observations(self, observations): | |
node_inputs, edge_inputs, current_index, node_padding_mask, edge_padding_mask, edge_mask = observations | |
self.episode_buffer[9] += deepcopy(node_inputs).to('cpu') | |
self.episode_buffer[10] += deepcopy(edge_inputs).to('cpu') | |
self.episode_buffer[11] += deepcopy(current_index).to('cpu') | |
self.episode_buffer[12] += deepcopy(node_padding_mask).to('cpu') | |
self.episode_buffer[13] += deepcopy(edge_padding_mask).to('cpu') | |
self.episode_buffer[14] += deepcopy(edge_mask).to('cpu') | |
# NEW: ADDED TO SAVE TRAJECTORY COORDS DURING TTA | |
def save_trajectory_coords(self, robot_position_coords, num_target_found): | |
self.trajectory_coords.append(robot_position_coords) | |
self.targets_found_on_path.append(num_target_found) | |