graph-rec / exp /gnn.py
erermeev-d
Updated baseline
a4da241
raw
history blame
12.1 kB
import argparse
import os
import tempfile
import numpy as np
import pandas as pd
import dgl
import torch
import wandb
from tqdm.auto import tqdm
from exp.utils import prepare_graphs, normalize_embeddings, LRSchedule
from exp.prepare_recsys import prepare_recsys
from exp.evaluate import evaluate_recsys
class GNNLayer(torch.nn.Module):
def __init__(self, hidden_dim, aggregator_type, skip_connection, bidirectional):
super().__init__()
self._skip_connection = skip_connection
self._bidirectional = bidirectional
self._conv = dgl.nn.SAGEConv(hidden_dim, hidden_dim, aggregator_type)
self._activation = torch.nn.ReLU()
if bidirectional:
self._conv_rev = dgl.nn.SAGEConv(hidden_dim, hidden_dim, aggregator_type)
self._activation_rev = torch.nn.ReLU()
def forward(self, graph, x):
edge_weights = graph.edata["weights"]
y = self._activation(self._conv(graph, x, edge_weights))
if self._bidirectional:
reversed_graph = dgl.reverse(graph, copy_edata=True)
edge_weights = reversed_graph.edata["weights"]
y = y + self._activation_rev(self._conv_rev(reversed_graph, x, edge_weights))
if self._skip_connection:
return x + y
else:
return y
class GNNModel(torch.nn.Module):
def __init__(
self,
bipartite_graph,
text_embeddings,
num_layers,
hidden_dim,
aggregator_type,
skip_connection,
bidirectional,
num_traversals,
termination_prob,
num_random_walks,
num_neighbor,
):
super().__init__()
self._bipartite_graph = bipartite_graph
self._text_embeddings = text_embeddings
self._sampler = dgl.sampling.PinSAGESampler(
bipartite_graph, "Item", "User", num_traversals,
termination_prob, num_random_walks, num_neighbor)
self._text_encoder = torch.nn.Linear(text_embeddings.shape[-1], hidden_dim)
self._layers = torch.nn.ModuleList()
for _ in range(num_layers):
self._layers.append(GNNLayer(
hidden_dim, aggregator_type, skip_connection, bidirectional))
def _sample_subraph(self, frontier_ids):
num_layers = len(self._layers)
device = self._bipartite_graph.device
subgraph = dgl.graph(([], []), num_nodes=self._bipartite_graph.num_nodes("Item")).to(device)
prev_ids = set()
weights = []
for _ in range(num_layers):
frontier_ids = torch.tensor(frontier_ids, dtype=torch.int64).to(device)
new_sample = self._sampler(frontier_ids)
new_weights = new_sample.edata["weights"]
new_edges = new_sample.edges()
subgraph.add_edges(*new_edges)
weights.append(new_weights)
prev_ids |= set(frontier_ids.cpu().tolist())
frontier_ids = set(dgl.compact_graphs(subgraph).ndata[dgl.NID].cpu().tolist())
frontier_ids = list(frontier_ids - prev_ids)
subgraph.edata["weights"] = torch.cat(weights, dim=0).to(torch.float32)
return subgraph
def forward(self, ids):
### Sample subgraph
sampled_subgraph = self._sample_subraph(ids)
sampled_subgraph = dgl.compact_graphs(sampled_subgraph, always_preserve=ids)
### Encode text embeddings
text_embeddings = self._text_embeddings[
sampled_subgraph.ndata[dgl.NID]]
features = self._text_encoder(text_embeddings)
### GNN goes brr...
for layer in self._layers:
features = layer(sampled_subgraph, features)
### Select features for initial ids
# TODO: write it more efficiently?
matches = sampled_subgraph.ndata[dgl.NID].unsqueeze(0) == ids.unsqueeze(1)
ids_in_subgraph = matches.nonzero(as_tuple=True)[1]
features = features[ids_in_subgraph]
### Normalize and return
features = features / torch.linalg.norm(features, dim=1, keepdim=True)
return features
### Based on https://arxiv.org/pdf/2205.03169
def nt_xent_loss(sim, temperature):
sim = sim / temperature
n = sim.shape[0] // 2 # n = |user_batch|
aligment_loss = -torch.mean(sim[torch.arange(n), torch.arange(n)+n])
mask = torch.diag(torch.ones(2*n, dtype=torch.bool)).to(sim.device)
sim = torch.where(mask, -torch.inf, sim)
sim = sim[:n, :]
distribution_loss = torch.mean(torch.logsumexp(sim, dim=1))
loss = aligment_loss + distribution_loss
return loss
def sample_item_batch(user_batch, bipartite_graph):
sampled_edges = dgl.sampling.sample_neighbors(
bipartite_graph, {"User": user_batch}, fanout=2
).edges(etype="ItemUser")
item_batch = sampled_edges[0]
item_batch = item_batch[torch.argsort(sampled_edges[1])]
item_batch = item_batch.reshape(-1, 2)
item_batch = item_batch.T
return item_batch
@torch.no_grad()
def inference_model(model, bipartite_graph, batch_size, hidden_dim, device):
model.eval()
item_embeddings = torch.zeros(bipartite_graph.num_nodes("Item"), hidden_dim).to(device)
for items_batch in tqdm(torch.utils.data.DataLoader(
torch.arange(bipartite_graph.num_nodes("Item")),
batch_size=batch_size,
shuffle=True
)):
item_embeddings[items_batch] = model(items_batch.to(device))
item_embeddings = normalize_embeddings(item_embeddings.cpu().numpy())
return item_embeddings
def prepare_gnn_embeddings(
# Paths
items_path,
train_ratings_path,
val_ratings_path,
text_embeddings_path,
embeddings_savepath,
# Learning hyperparameters
temperature,
batch_size,
lr,
num_epochs,
# Model hyperparameters
num_layers,
hidden_dim,
aggregator_type,
skip_connection,
bidirectional,
num_traversals,
termination_prob,
num_random_walks,
num_neighbor,
# Misc
validate_every_n_epoch,
device,
wandb_name,
use_wandb,
):
### Prepare graph
bipartite_graph, _ = prepare_graphs(items_path, train_ratings_path)
bipartite_graph = bipartite_graph.to(device)
### Init wandb
if use_wandb:
wandb.init(project="graph-rec-gnn", name=wandb_name)
### Prepare model
text_embeddings = torch.tensor(np.load(text_embeddings_path)).to(device)
model = GNNModel(
bipartite_graph=bipartite_graph,
text_embeddings=text_embeddings,
num_layers=num_layers,
hidden_dim=hidden_dim,
aggregator_type=aggregator_type,
skip_connection=skip_connection,
bidirectional=bidirectional,
num_traversals=num_traversals,
termination_prob=termination_prob,
num_random_walks=num_random_walks,
num_neighbor=num_neighbor
)
model = model.to(device)
### Prepare dataloader
all_users = torch.arange(bipartite_graph.num_nodes("User")).to(device)
all_users = all_users[bipartite_graph.in_degrees(all_users, etype="ItemUser") > 1] # We need to sample 2 items per user
dataloader = torch.utils.data.DataLoader(
all_users, batch_size=batch_size, shuffle=True, drop_last=True)
### Prepare optimizer & LR scheduler
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
lr_scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda _: 1.0)
### Train loop
model.train()
for epoch in range(num_epochs):
### Train
for user_batch in tqdm(dataloader):
item_batch = sample_item_batch(user_batch, bipartite_graph) # (2, |user_batch|)
item_batch = item_batch.reshape(-1) # (2 * |user_batch|)
features = model(item_batch) # (2 * |user_batch|, hidden_dim)
sim = features @ features.T # (2 * |user_batch|, 2 * |user_batch|)
loss = nt_xent_loss(sim, temperature)
if use_wandb:
wandb.log({"loss": loss.item()})
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_scheduler.step()
### Validation
if (validate_every_n_epoch is not None) and (((epoch + 1) % validate_every_n_epoch) == 0):
item_embeddings = inference_model(
model, bipartite_graph, batch_size, hidden_dim, device)
with tempfile.TemporaryDirectory() as tmp_dir_name:
tmp_embeddings_path = os.path.join(tmp_dir_name, "embeddings.npy")
np.save(tmp_embeddings_path, item_embeddings)
prepare_recsys(items_path, tmp_embeddings_path, tmp_dir_name)
metrics = evaluate_recsys(
val_ratings_path,
os.path.join(tmp_dir_name, "index.faiss"),
os.path.join(tmp_dir_name, "items.db"))
print(f"Epoch {epoch + 1} / {num_epochs}. {metrics}")
if use_wandb:
wandb.log(metrics)
if use_wandb:
wandb.finish()
### Process full dataset
item_embeddings = inference_model(model, bipartite_graph, batch_size, hidden_dim, device)
np.save(embeddings_savepath, item_embeddings)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Prepare GNN Embeddings")
# Paths
parser.add_argument("--items_path", type=str, required=True, help="Path to the items file")
parser.add_argument("--train_ratings_path", type=str, required=True, help="Path to the train ratings file")
parser.add_argument("--val_ratings_path", type=str, required=True, help="Path to the validation ratings file")
parser.add_argument("--text_embeddings_path", type=str, required=True, help="Path to the text embeddings file")
parser.add_argument("--embeddings_savepath", type=str, required=True, help="Path to the file where gnn embeddings will be saved")
# Learning hyperparameters
parser.add_argument("--temperature", type=float, default=0.1, help="Temperature for NT-Xent loss")
parser.add_argument("--batch_size", type=int, default=512, help="Batch size for training")
parser.add_argument("--lr", type=float, default=0.01, help="Learning rate")
parser.add_argument("--num_epochs", type=int, default=4, help="Number of epochs")
# Model hyperparameters
parser.add_argument("--num_layers", type=int, default=2, help="Number of layers in the model")
parser.add_argument("--hidden_dim", type=int, default=64, help="Hidden dimension size")
parser.add_argument("--aggregator_type", type=str, default="mean", help="Type of aggregator in SAGEConv")
parser.add_argument("--skip_connection", action="store_true", dest="skip_connection", help="Disable skip connections")
parser.add_argument("--no_bidirectional", action="store_false", dest="bidirectional", help="Do not use reversed edges in convolution")
parser.add_argument("--num_traversals", type=int, default=4, help="Number of traversals in PinSAGE-like sampler")
parser.add_argument("--termination_prob", type=float, default=0.5, help="Termination probability in PinSAGE-like sampler")
parser.add_argument("--num_random_walks", type=int, default=200, help="Number of random walks in PinSAGE-like sampler")
parser.add_argument("--num_neighbor", type=int, default=10, help="Number of neighbors in PinSAGE-like sampler")
# Misc
parser.add_argument("--validate_every_n_epoch", type=int, default=4, help="Perform RecSys validation every n train epochs.")
parser.add_argument("--device", type=str, default="cpu", help="Device to run the model on (cpu or cuda)")
parser.add_argument("--wandb_name", type=str, help="WandB run name")
parser.add_argument("--no_wandb", action="store_false", dest="use_wandb", help="Disable WandB logging")
args = parser.parse_args()
prepare_gnn_embeddings(**vars(args))