Spaces:
Running
Running
File size: 10,532 Bytes
57cfcfd dccded3 57cfcfd 4c90601 0fd89a7 dccded3 e992960 57cfcfd 4c90601 dccded3 57cfcfd 0fd89a7 dccded3 0fd89a7 57cfcfd dccded3 57cfcfd dccded3 57cfcfd dccded3 57cfcfd dccded3 57cfcfd dccded3 57cfcfd dccded3 57cfcfd dccded3 f203179 dccded3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# audio_api.py
import base64
import io
import logging
import platform
import time
from datetime import datetime
from typing import Optional
import torch
import torchaudio
from fastapi import FastAPI, HTTPException, Request
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel, Field
# 配置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler('audio_generation.log'),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
from boson_multimodal.data_types import ChatMLSample, Message, AudioContent
from boson_multimodal.serve.serve_engine import HiggsAudioServeEngine, HiggsAudioResponse
# -------------------- 模型加载 --------------------
MODEL_PATH = "bosonai/higgs-audio-v2-generation-3B-base"
AUDIO_TOKENIZER_PATH = "bosonai/higgs-audio-v2-tokenizer"
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"开始加载模型,设备: {device}")
logger.info(f"模型路径: {MODEL_PATH}")
logger.info(f"音频分词器路径: {AUDIO_TOKENIZER_PATH}")
try:
model_load_start = time.time()
serve_engine = HiggsAudioServeEngine(MODEL_PATH, AUDIO_TOKENIZER_PATH, device=device)
model_load_time = time.time() - model_load_start
logger.info(f"模型加载成功,耗时: {model_load_time:.2f}秒")
# 检查GPU内存使用情况
if torch.cuda.is_available():
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3
gpu_allocated = torch.cuda.memory_allocated(0) / 1024**3
logger.info(f"GPU总内存: {gpu_memory:.2f}GB, 已分配: {gpu_allocated:.2f}GB")
except Exception as e:
logger.error(f"模型加载失败: {str(e)}")
raise
# -------------------- FastAPI --------------------
app = FastAPI(title="Higgs Audio Generation API", version="0.1.0")
class AudioRequest(BaseModel):
user_prompt: str = Field(..., description="需要生成音频的文本")
max_new_tokens: Optional[int] = Field(1024, ge=1, le=2048)
temperature: Optional[float] = Field(0.3, ge=0.0, le=2.0)
top_p: Optional[float] = Field(0.95, ge=0.0, le=1.0)
top_k: Optional[int] = Field(50, ge=1, le=100)
class AudioResponse(BaseModel):
audio_base64: str
sample_rate: int
@app.post("/generate-audio", response_model=AudioResponse)
def generate_audio(req: AudioRequest, request: Request):
request_id = f"{datetime.now().strftime('%Y%m%d_%H%M%S')}_{id(request)}"
start_time = time.time()
logger.info(f"[{request_id}] 收到音频生成请求")
logger.info(f"[{request_id}] 客户端IP: {request.client.host if request.client else 'unknown'}")
logger.info(f"[{request_id}] 请求参数: user_prompt='{req.user_prompt[:100]}{'...' if len(req.user_prompt) > 100 else ''}', "
f"max_new_tokens={req.max_new_tokens}, temperature={req.temperature}, "
f"top_p={req.top_p}, top_k={req.top_k}")
system_prompt = (
"Generate audio following instruction.\n\n<|scene_desc_start|>\n"
"Audio is recorded from a quiet room.\n<|scene_desc_end|>"
)
messages = [
Message(role="system", content=system_prompt),
Message(role="user", content=req.user_prompt),
]
logger.debug(f"[{request_id}] 构建的消息: {[{'role': m.role, 'content': m.content[:50] + '...' if len(m.content) > 50 else m.content} for m in messages]}")
try:
# 记录GPU内存使用情况(生成前)
if torch.cuda.is_available():
gpu_memory_before = torch.cuda.memory_allocated(0) / 1024**3
logger.debug(f"[{request_id}] 生成前GPU内存使用: {gpu_memory_before:.2f}GB")
generation_start = time.time()
logger.info(f"[{request_id}] 开始音频生成...")
output: HiggsAudioResponse = serve_engine.generate(
chat_ml_sample=ChatMLSample(messages=messages),
max_new_tokens=req.max_new_tokens,
temperature=req.temperature,
top_p=req.top_p,
top_k=req.top_k,
stop_strings=["<|end_of_text|>", "<|eot_id|>"],
)
generation_time = time.time() - generation_start
logger.info(f"[{request_id}] 音频生成完成,耗时: {generation_time:.2f}秒")
# 记录生成的音频信息
audio_duration = len(output.audio) / output.sampling_rate
logger.info(f"[{request_id}] 生成音频信息: 采样率={output.sampling_rate}Hz, "
f"时长={audio_duration:.2f}秒, 样本数={len(output.audio)}")
# 记录GPU内存使用情况(生成后)
if torch.cuda.is_available():
gpu_memory_after = torch.cuda.memory_allocated(0) / 1024**3
logger.debug(f"[{request_id}] 生成后GPU内存使用: {gpu_memory_after:.2f}GB")
except Exception as e:
error_time = time.time() - start_time
logger.error(f"[{request_id}] 音频生成失败,耗时: {error_time:.2f}秒,错误: {str(e)}")
logger.exception(f"[{request_id}] 详细错误信息:")
raise HTTPException(status_code=500, detail=f"音频生成失败: {str(e)}")
try:
# 音频编码处理
encoding_start = time.time()
logger.debug(f"[{request_id}] 开始音频编码...")
# 把 numpy 数组转 torch.Tensor 并编码成 WAV 字节流
waveform = torch.from_numpy(output.audio)[None, :] # shape=(1, T)
buf = io.BytesIO()
torchaudio.save(buf, waveform, output.sampling_rate, format="wav")
audio_bytes = buf.getvalue()
audio_b64 = base64.b64encode(audio_bytes).decode("utf-8")
encoding_time = time.time() - encoding_start
total_time = time.time() - start_time
logger.info(f"[{request_id}] 音频编码完成,耗时: {encoding_time:.2f}秒")
logger.info(f"[{request_id}] 请求处理完成,总耗时: {total_time:.2f}秒,"
f"编码后大小: {len(audio_b64)} 字符")
return AudioResponse(audio_base64=audio_b64, sample_rate=output.sampling_rate)
except Exception as e:
error_time = time.time() - start_time
logger.error(f"[{request_id}] 音频编码失败,耗时: {error_time:.2f}秒,错误: {str(e)}")
logger.exception(f"[{request_id}] 详细错误信息:")
raise HTTPException(status_code=500, detail=f"音频编码失败: {str(e)}")
# 健康检查端点
@app.get("/health")
def health_check():
"""健康检查端点,返回服务状态信息"""
try:
# 检查GPU状态
gpu_info = {}
if torch.cuda.is_available():
gpu_info = {
"gpu_available": True,
"gpu_count": torch.cuda.device_count(),
"current_device": torch.cuda.current_device(),
"device_name": torch.cuda.get_device_name(0),
"memory_allocated_gb": round(torch.cuda.memory_allocated(0) / 1024**3, 2),
"memory_reserved_gb": round(torch.cuda.memory_reserved(0) / 1024**3, 2),
"memory_total_gb": round(torch.cuda.get_device_properties(0).total_memory / 1024**3, 2)
}
else:
gpu_info = {"gpu_available": False}
return {
"status": "healthy",
"timestamp": datetime.now().isoformat(),
"device": device,
"model_path": MODEL_PATH,
"tokenizer_path": AUDIO_TOKENIZER_PATH,
"gpu_info": gpu_info
}
except Exception as e:
logger.error(f"健康检查失败: {str(e)}")
raise HTTPException(status_code=500, detail=f"健康检查失败: {str(e)}")
# 系统信息端点
@app.get("/system-info")
def system_info():
"""返回详细的系统信息"""
import psutil
import platform
try:
# CPU信息
cpu_info = {
"cpu_count": psutil.cpu_count(),
"cpu_percent": psutil.cpu_percent(interval=1),
"cpu_freq": psutil.cpu_freq()._asdict() if psutil.cpu_freq() else None
}
# 内存信息
memory = psutil.virtual_memory()
memory_info = {
"total_gb": round(memory.total / 1024**3, 2),
"available_gb": round(memory.available / 1024**3, 2),
"used_gb": round(memory.used / 1024**3, 2),
"percent": memory.percent
}
# 系统信息
system_info = {
"platform": platform.platform(),
"python_version": platform.python_version(),
"torch_version": torch.__version__,
"cuda_version": torch.version.cuda if torch.cuda.is_available() else None
}
return {
"timestamp": datetime.now().isoformat(),
"cpu": cpu_info,
"memory": memory_info,
"system": system_info
}
except Exception as e:
logger.error(f"获取系统信息失败: {str(e)}")
raise HTTPException(status_code=500, detail=f"获取系统信息失败: {str(e)}")
# 新增:把 / 指向静态首页
app.mount("/static", StaticFiles(directory="static"), name="static")
@app.get("/", include_in_schema=False)
async def index():
return FileResponse("static/index.html")
# 启动时记录系统信息
@app.on_event("startup")
async def startup_event():
"""应用启动时的事件处理"""
logger.info("=" * 50)
logger.info("音频生成API服务启动")
logger.info(f"启动时间: {datetime.now().isoformat()}")
logger.info(f"Python版本: {platform.python_version()}")
logger.info(f"PyTorch版本: {torch.__version__}")
logger.info(f"设备: {device}")
if torch.cuda.is_available():
logger.info(f"CUDA版本: {torch.version.cuda}")
logger.info(f"GPU设备数量: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
logger.info("=" * 50)
@app.on_event("shutdown")
async def shutdown_event():
"""应用关闭时的事件处理"""
logger.info("音频生成API服务正在关闭...")
logger.info(f"关闭时间: {datetime.now().isoformat()}")
# 清理GPU内存
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU内存已清理") |