Spaces:
Sleeping
Sleeping
import logging | |
import gradio as gr | |
import numpy as np | |
import random | |
# import spaces #[uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
MODEL_REPO_IDS = ["stable-diffusion-v1-5/stable-diffusion-v1-5", | |
"black-forest-labs/FLUX.1-dev", | |
"black-forest-labs/FLUX.1-schnell", | |
"stabilityai/sdxl-turbo", | |
"stabilityai/stable-diffusion-xl-base-1.0",] | |
DEFAULT_MODEL_REPO_ID = "stabilityai/sdxl-turbo" # Replace to the model you would like to use | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
else: | |
torch_dtype = torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# @spaces.GPU #[uncomment to use ZeroGPU] | |
def infer( | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
model_repo_ids = [DEFAULT_MODEL_REPO_ID], | |
progress=gr.Progress(track_tqdm=True), | |
): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
images = [] | |
for model_repo_id in model_repo_ids: | |
try: | |
image = None | |
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype) | |
pipe = pipe.to(device) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
width=width, | |
height=height, | |
generator=generator, | |
).images[0] | |
images.append(image) | |
except Exception as e: | |
logging.error(f"Error generating image using model {model_repo_id}", exc_info=e) | |
return images, seed | |
examples = [ | |
"Local Pizzeria perspective from the table with a pizza and a glass of wine in focus and the background is a bit blared. Style should be as if a customer took the picture using his phone.", | |
"A butcher in a jungle, cold color palette, muted colors, detailed, 4k", | |
"A delicious ceviche cheesecake slice", | |
] | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 640px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(" # Text-to-Image Gradio Template") | |
with gr.Row(): | |
prompt = gr.Text( | |
label="Prompt", | |
show_label=False, | |
max_lines=4, | |
placeholder="Enter your prompt", | |
container=False, | |
) | |
run_button = gr.Button("Run", scale=0, variant="primary") | |
images = gr.Gallery(label="Generated Images") | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Text( | |
label="Negative prompt", | |
max_lines=2, | |
placeholder="people faces, text ", | |
visible=False, | |
) | |
model_repo_ids = gr.Dropdown( | |
choices=MODEL_REPO_IDS, | |
multiselect = True, | |
value = [MODEL_REPO_IDS[0]] | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=256, | |
maximum=MAX_IMAGE_SIZE, | |
step=32, | |
value=512, # Replace with defaults that work for your model | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label="Guidance scale", | |
minimum=0.0, | |
maximum=10.0, | |
step=0.1, | |
value=0.0, # Replace with defaults that work for your model | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", | |
minimum=1, | |
maximum=50, | |
step=1, | |
value=2, # Replace with defaults that work for your model | |
) | |
gr.Examples(examples=examples, inputs=[prompt]) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
seed, | |
randomize_seed, | |
width, | |
height, | |
guidance_scale, | |
num_inference_steps, | |
model_repo_ids | |
], | |
outputs=[images, seed], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |