hantupocong's picture
Update data.py
0af5be2 verified
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, random_split
import pandas as pd
import numpy as np
from transformers import BertTokenizer
import os
from pose_format import Pose
import matplotlib.pyplot as plt
from matplotlib import animation
from fastdtw import fastdtw # Keep this import
from scipy.spatial.distance import cosine
from config import MAX_TEXT_LEN, TARGET_NUM_FRAMES, BATCH_SIZE, TEACHER_FORCING_RATIO, SMOOTHING_ENABLED
# ===== KEYPOINT SELECTION =====
selected_keypoint_indices = list(np.r_[0:25, 501:522, 522:543])
NUM_KEYPOINTS = len(selected_keypoint_indices)
POSE_DIM = NUM_KEYPOINTS * 3
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ===== SMOOTHING =====
def selective_smoothing(preds):
smoothed = preds.clone()
body_indices = slice(0, 25 * 3)
for t in range(1, preds.shape[1] - 1):
smoothed[:, t, body_indices] = (
0.25 * preds[:, t - 1, body_indices] +
0.5 * preds[:, t, body_indices] +
0.25 * preds[:, t + 1, body_indices]
)
return smoothed
# ===== HAND INDEX SETUP =====
hand_indices = list(range(15 * 3, POSE_DIM)) # hand joints = after body joints in flattened 3D vector
joint_weights = torch.ones(POSE_DIM).to(device)
joint_weights[hand_indices] *= 3.0
# ===== GLOBAL NORMALIZATION =====
def compute_global_mean_std(pose_folder, csv_file):
data = pd.read_csv(csv_file)
all_poses = []
# Store valid masks separately to ensure correct normalization
all_masks = []
for filename in data["filename"]:
pose_path = os.path.join(pose_folder, filename)
with open(pose_path, "rb") as f:
pose = Pose.read(f.read())
keypoints = np.array(selected_keypoint_indices)
# (T, 1, K, 3) -> (T, K, 3)
pose_data = np.squeeze(pose.body.data, axis=1)[:, keypoints, :]
# (T, 1, K) -> (T, K)
confidence = np.squeeze(pose.body.confidence, axis=1)[:, keypoints]
# Reshape to (T, K*3)
pose_data_flat = pose_data.reshape(pose_data.shape[0], -1)
# Reshape confidence to (T, K*3) - repeat confidence for each coordinate
confidence_flat = np.repeat(confidence, 3, axis=1)
# Create a mask based on confidence for the flattened data
mask_flat = (confidence_flat > 0.5).astype(np.float32)
# Append the full pose data and mask for interpolation later
all_poses.append(pose_data_flat)
all_masks.append(mask_flat)
# Pad or interpolate all poses and masks to a fixed length (TARGET_NUM_FRAMES)
padded_poses = []
padded_masks = []
for pose_data_flat, mask_flat in zip(all_poses, all_masks):
current_frames = pose_data_flat.shape[0]
if current_frames < TARGET_NUM_FRAMES:
pad_len = TARGET_NUM_FRAMES - current_frames
pose_pad = np.zeros((pad_len, POSE_DIM))
mask_pad = np.zeros((pad_len, POSE_DIM)) # Pad mask with zeros
padded_pose = np.concatenate([pose_data_flat, pose_pad], axis=0)
padded_mask = np.concatenate([mask_flat, mask_pad], axis=0)
else:
indices = np.linspace(0, current_frames - 1, TARGET_NUM_FRAMES).astype(int)
padded_pose = pose_data_flat[indices]
padded_mask = mask_flat[indices]
padded_poses.append(padded_pose)
padded_masks.append(padded_mask)
# Stack all padded poses and masks: (Total_Samples * TARGET_NUM_FRAMES, POSE_DIM)
stacked_poses = np.vstack(padded_poses)
stacked_masks = np.vstack(padded_masks)
# Compute mean and std using the masks to only include valid points
# Weighted average using mask as weights
mean = np.sum(stacked_poses * stacked_masks, axis=0) / (np.sum(stacked_masks, axis=0) + 1e-8) # Add epsilon for stability
# Compute variance, then sqrt for std
variance = np.sum(stacked_masks * (stacked_poses - mean)**2, axis=0) / (np.sum(stacked_masks, axis=0) + 1e-8)
std = np.sqrt(variance)
std[std == 0] = 1e-8 # Avoid division by zero
return mean, std
#POSE_FOLDER = "/content/drive/MyDrive/pose/words/ase"
CSV_FILE = "annotated.csv"
mean_path = "global_mean.npy"
std_path = "global_std.npy"
if os.path.exists(mean_path) and os.path.exists(std_path):
print("Loading global mean and std from file.")
GLOBAL_MEAN = np.load(mean_path)
GLOBAL_STD = np.load(std_path)
else:
print("Computing global mean and std from dataset.")
GLOBAL_MEAN, GLOBAL_STD = compute_global_mean_std(POSE_FOLDER, CSV_FILE)
# Save the computed mean and std
# Ensure they are not MaskedArrays if the computation somehow produced them
# If compute_global_mean_std is modified to return standard arrays, this is redundant but safe
if isinstance(GLOBAL_MEAN, np.ma.MaskedArray):
GLOBAL_MEAN = GLOBAL_MEAN.data
if isinstance(GLOBAL_STD, np.ma.MaskedArray):
GLOBAL_STD = GLOBAL_STD.data
np.save(mean_path, GLOBAL_MEAN)
np.save(std_path, GLOBAL_STD)
GLOBAL_MEAN_T = torch.tensor(GLOBAL_MEAN).float().to(device)
GLOBAL_STD_T = torch.tensor(GLOBAL_STD).float().to(device)
class TextToPoseDataset(Dataset):
def __init__(self, csv_file, pose_folder, tokenizer, is_train=True):
self.data = pd.read_csv(csv_file)
self.pose_folder = pose_folder
self.tokenizer = tokenizer
self.is_train = is_train # enable augment only during training
def __len__(self):
return len(self.data)
def load_pose_data_and_mask(self, filename):
pose_path = os.path.join(self.pose_folder, filename)
with open(pose_path, "rb") as f:
pose = Pose.read(f.read())
keypoints = np.array(selected_keypoint_indices)
pose_data = np.squeeze(pose.body.data, axis=1)[:, keypoints, :]
confidence = np.squeeze(pose.body.confidence, axis=1)[:, keypoints]
return pose_data, confidence
def apply_augmentations(self, pose_data, confidence):
T = pose_data.shape[0]
# Temporal warp (resample frame indices with small noise)
if T > TARGET_NUM_FRAMES and np.random.rand() < 0.5:
indices = np.linspace(0, T - 1, TARGET_NUM_FRAMES)
jitter = np.random.uniform(-0.5, 0.5, size=indices.shape)
indices = np.clip(indices + jitter, 0, T - 1).astype(int)
pose_data = pose_data[indices]
confidence = confidence[indices]
# Mirror (flip X-axis)
if np.random.rand() < 0.3:
pose_data[..., 0] *= -1
# Jitter (small Gaussian noise)
if np.random.rand() < 0.3:
pose_data += np.random.normal(0, 0.02, pose_data.shape)
return pose_data, confidence
def __getitem__(self, idx):
row = self.data.iloc[idx]
filename = row["filename"]
text = row["text"]
input_ids = self.tokenizer(
text, padding="max_length", truncation=True,
max_length=MAX_TEXT_LEN, return_tensors="pt"
)
pose_data, confidence = self.load_pose_data_and_mask(filename)
if self.is_train:
pose_data, confidence = self.apply_augmentations(pose_data, confidence)
# OLD Flatten
pose_data_flat = pose_data.reshape(pose_data.shape[0], -1)
confidence_flat = np.repeat(confidence, 3, axis=1)
mask_flat = (confidence_flat > 0.5).astype(np.float32)
# Pad or warp to fixed length
current_frames = pose_data_flat.shape[0]
if current_frames < TARGET_NUM_FRAMES:
pad_len = TARGET_NUM_FRAMES - current_frames
pose_pad = np.zeros((pad_len, POSE_DIM))
mask_pad = np.zeros((pad_len, POSE_DIM))
padded_pose = np.concatenate([pose_data_flat, pose_pad], axis=0)
padded_mask = np.concatenate([mask_flat, mask_pad], axis=0)
else:
indices = np.linspace(0, current_frames - 1, TARGET_NUM_FRAMES).astype(int)
padded_pose = pose_data_flat[indices]
padded_mask = mask_flat[indices]
# Normalize
normalized_pose = (padded_pose - GLOBAL_MEAN) / GLOBAL_STD
return (
input_ids.input_ids.squeeze(0),
input_ids.attention_mask.squeeze(0),
torch.tensor(normalized_pose).float(),
torch.tensor(padded_mask).float(),
text
)
def collate_fn(batch):
input_ids, attn_masks, poses, masks, words = zip(*batch)
return (
torch.stack(input_ids),
torch.stack(attn_masks),
torch.stack(poses),
torch.stack(masks),
list(words)
)