|
import torch |
|
import torch.nn as nn |
|
from torch.utils.data import Dataset, DataLoader, random_split |
|
import pandas as pd |
|
import numpy as np |
|
from transformers import BertTokenizer |
|
import os |
|
from pose_format import Pose |
|
import matplotlib.pyplot as plt |
|
from matplotlib import animation |
|
from fastdtw import fastdtw |
|
from scipy.spatial.distance import cosine |
|
from config import MAX_TEXT_LEN, TARGET_NUM_FRAMES, BATCH_SIZE, TEACHER_FORCING_RATIO, SMOOTHING_ENABLED |
|
|
|
|
|
selected_keypoint_indices = list(np.r_[0:25, 501:522, 522:543]) |
|
NUM_KEYPOINTS = len(selected_keypoint_indices) |
|
POSE_DIM = NUM_KEYPOINTS * 3 |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
def selective_smoothing(preds): |
|
smoothed = preds.clone() |
|
body_indices = slice(0, 25 * 3) |
|
for t in range(1, preds.shape[1] - 1): |
|
smoothed[:, t, body_indices] = ( |
|
0.25 * preds[:, t - 1, body_indices] + |
|
0.5 * preds[:, t, body_indices] + |
|
0.25 * preds[:, t + 1, body_indices] |
|
) |
|
return smoothed |
|
|
|
|
|
|
|
hand_indices = list(range(15 * 3, POSE_DIM)) |
|
joint_weights = torch.ones(POSE_DIM).to(device) |
|
joint_weights[hand_indices] *= 3.0 |
|
|
|
|
|
def compute_global_mean_std(pose_folder, csv_file): |
|
data = pd.read_csv(csv_file) |
|
all_poses = [] |
|
|
|
all_masks = [] |
|
|
|
for filename in data["filename"]: |
|
pose_path = os.path.join(pose_folder, filename) |
|
with open(pose_path, "rb") as f: |
|
pose = Pose.read(f.read()) |
|
|
|
keypoints = np.array(selected_keypoint_indices) |
|
|
|
pose_data = np.squeeze(pose.body.data, axis=1)[:, keypoints, :] |
|
|
|
confidence = np.squeeze(pose.body.confidence, axis=1)[:, keypoints] |
|
|
|
|
|
pose_data_flat = pose_data.reshape(pose_data.shape[0], -1) |
|
|
|
confidence_flat = np.repeat(confidence, 3, axis=1) |
|
|
|
|
|
mask_flat = (confidence_flat > 0.5).astype(np.float32) |
|
|
|
|
|
all_poses.append(pose_data_flat) |
|
all_masks.append(mask_flat) |
|
|
|
|
|
|
|
padded_poses = [] |
|
padded_masks = [] |
|
for pose_data_flat, mask_flat in zip(all_poses, all_masks): |
|
current_frames = pose_data_flat.shape[0] |
|
if current_frames < TARGET_NUM_FRAMES: |
|
pad_len = TARGET_NUM_FRAMES - current_frames |
|
pose_pad = np.zeros((pad_len, POSE_DIM)) |
|
mask_pad = np.zeros((pad_len, POSE_DIM)) |
|
padded_pose = np.concatenate([pose_data_flat, pose_pad], axis=0) |
|
padded_mask = np.concatenate([mask_flat, mask_pad], axis=0) |
|
else: |
|
indices = np.linspace(0, current_frames - 1, TARGET_NUM_FRAMES).astype(int) |
|
padded_pose = pose_data_flat[indices] |
|
padded_mask = mask_flat[indices] |
|
|
|
padded_poses.append(padded_pose) |
|
padded_masks.append(padded_mask) |
|
|
|
|
|
stacked_poses = np.vstack(padded_poses) |
|
stacked_masks = np.vstack(padded_masks) |
|
|
|
|
|
|
|
mean = np.sum(stacked_poses * stacked_masks, axis=0) / (np.sum(stacked_masks, axis=0) + 1e-8) |
|
|
|
variance = np.sum(stacked_masks * (stacked_poses - mean)**2, axis=0) / (np.sum(stacked_masks, axis=0) + 1e-8) |
|
std = np.sqrt(variance) |
|
|
|
std[std == 0] = 1e-8 |
|
return mean, std |
|
|
|
|
|
CSV_FILE = "annotated.csv" |
|
mean_path = "global_mean.npy" |
|
std_path = "global_std.npy" |
|
|
|
if os.path.exists(mean_path) and os.path.exists(std_path): |
|
print("Loading global mean and std from file.") |
|
GLOBAL_MEAN = np.load(mean_path) |
|
GLOBAL_STD = np.load(std_path) |
|
else: |
|
print("Computing global mean and std from dataset.") |
|
GLOBAL_MEAN, GLOBAL_STD = compute_global_mean_std(POSE_FOLDER, CSV_FILE) |
|
|
|
|
|
|
|
if isinstance(GLOBAL_MEAN, np.ma.MaskedArray): |
|
GLOBAL_MEAN = GLOBAL_MEAN.data |
|
if isinstance(GLOBAL_STD, np.ma.MaskedArray): |
|
GLOBAL_STD = GLOBAL_STD.data |
|
|
|
np.save(mean_path, GLOBAL_MEAN) |
|
np.save(std_path, GLOBAL_STD) |
|
|
|
GLOBAL_MEAN_T = torch.tensor(GLOBAL_MEAN).float().to(device) |
|
GLOBAL_STD_T = torch.tensor(GLOBAL_STD).float().to(device) |
|
|
|
|
|
class TextToPoseDataset(Dataset): |
|
def __init__(self, csv_file, pose_folder, tokenizer, is_train=True): |
|
self.data = pd.read_csv(csv_file) |
|
self.pose_folder = pose_folder |
|
self.tokenizer = tokenizer |
|
self.is_train = is_train |
|
|
|
def __len__(self): |
|
return len(self.data) |
|
|
|
def load_pose_data_and_mask(self, filename): |
|
pose_path = os.path.join(self.pose_folder, filename) |
|
with open(pose_path, "rb") as f: |
|
pose = Pose.read(f.read()) |
|
|
|
keypoints = np.array(selected_keypoint_indices) |
|
pose_data = np.squeeze(pose.body.data, axis=1)[:, keypoints, :] |
|
confidence = np.squeeze(pose.body.confidence, axis=1)[:, keypoints] |
|
|
|
return pose_data, confidence |
|
|
|
def apply_augmentations(self, pose_data, confidence): |
|
T = pose_data.shape[0] |
|
|
|
|
|
if T > TARGET_NUM_FRAMES and np.random.rand() < 0.5: |
|
indices = np.linspace(0, T - 1, TARGET_NUM_FRAMES) |
|
jitter = np.random.uniform(-0.5, 0.5, size=indices.shape) |
|
indices = np.clip(indices + jitter, 0, T - 1).astype(int) |
|
pose_data = pose_data[indices] |
|
confidence = confidence[indices] |
|
|
|
|
|
if np.random.rand() < 0.3: |
|
pose_data[..., 0] *= -1 |
|
|
|
|
|
if np.random.rand() < 0.3: |
|
pose_data += np.random.normal(0, 0.02, pose_data.shape) |
|
|
|
return pose_data, confidence |
|
|
|
def __getitem__(self, idx): |
|
row = self.data.iloc[idx] |
|
filename = row["filename"] |
|
text = row["text"] |
|
|
|
input_ids = self.tokenizer( |
|
text, padding="max_length", truncation=True, |
|
max_length=MAX_TEXT_LEN, return_tensors="pt" |
|
) |
|
|
|
pose_data, confidence = self.load_pose_data_and_mask(filename) |
|
|
|
if self.is_train: |
|
pose_data, confidence = self.apply_augmentations(pose_data, confidence) |
|
|
|
|
|
pose_data_flat = pose_data.reshape(pose_data.shape[0], -1) |
|
confidence_flat = np.repeat(confidence, 3, axis=1) |
|
mask_flat = (confidence_flat > 0.5).astype(np.float32) |
|
|
|
|
|
current_frames = pose_data_flat.shape[0] |
|
if current_frames < TARGET_NUM_FRAMES: |
|
pad_len = TARGET_NUM_FRAMES - current_frames |
|
pose_pad = np.zeros((pad_len, POSE_DIM)) |
|
mask_pad = np.zeros((pad_len, POSE_DIM)) |
|
padded_pose = np.concatenate([pose_data_flat, pose_pad], axis=0) |
|
padded_mask = np.concatenate([mask_flat, mask_pad], axis=0) |
|
else: |
|
indices = np.linspace(0, current_frames - 1, TARGET_NUM_FRAMES).astype(int) |
|
padded_pose = pose_data_flat[indices] |
|
padded_mask = mask_flat[indices] |
|
|
|
|
|
normalized_pose = (padded_pose - GLOBAL_MEAN) / GLOBAL_STD |
|
|
|
return ( |
|
input_ids.input_ids.squeeze(0), |
|
input_ids.attention_mask.squeeze(0), |
|
torch.tensor(normalized_pose).float(), |
|
torch.tensor(padded_mask).float(), |
|
text |
|
) |
|
|
|
|
|
def collate_fn(batch): |
|
input_ids, attn_masks, poses, masks, words = zip(*batch) |
|
return ( |
|
torch.stack(input_ids), |
|
torch.stack(attn_masks), |
|
torch.stack(poses), |
|
torch.stack(masks), |
|
list(words) |
|
) |