chatbot / app.py
mobinln's picture
Update app.py
034b4c3 verified
import subprocess
import gradio as gr
from openai import OpenAI
import json
subprocess.Popen("bash /home/user/app/start.sh", shell=True)
client = OpenAI(base_url="http://0.0.0.0:8000/v1", api_key="sk-local", timeout=600)
def handle_function_call(function_name, arguments):
"""Handle function calls from the model"""
if function_name == "browser_search":
# Implement your browser search logic here
query = arguments.get("query", "")
max_results = arguments.get("max_results", 5)
return f"Search results for '{query}' (max {max_results} results): [Implementation needed]"
elif function_name == "code_interpreter":
# Implement your code interpreter logic here
code = arguments.get("code", "")
if not code:
return "No code provided to execute."
return f"Code interpreter results for '{code}': [Implementation needed]"
return f"Unknown function: {function_name}"
def respond(
message,
history: list[tuple[str, str]] = [],
system_message=None,
max_tokens=None,
temperature=0.7,
):
messages = []
if system_message:
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
stream = client.chat.completions.create(
model="Deepseek-R1-0528-Qwen3-8B",
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
stream=True,
tools=[
{
"type": "function",
"function": {
"name": "browser_search",
"description": (
"Search the web for a given query and return the most relevant results."
),
"parameters": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "The search query string.",
},
"max_results": {
"type": "integer",
"description": (
"Maximum number of search results to return. "
"If omitted the service will use its default."
),
"default": 5,
},
},
"required": ["query"],
},
},
},
{
"type": "function",
"function": {
"name": "code_interpreter",
"description": (
"Execute Python code and return the results. "
"Can generate plots, perform calculations, and data analysis."
),
"parameters": {
"type": "object",
"properties": {
"code": {
"type": "string",
"description": "The Python code to execute.",
},
},
"required": ["code"],
},
},
},
],
)
print("messages", messages)
output = ""
reasoning = ""
function_calls_to_handle = []
for chunk in stream:
delta = chunk.choices[0].delta
if hasattr(delta, "tool_calls") and delta.tool_calls:
for tool_call in delta.tool_calls:
if tool_call.function:
function_calls_to_handle.append(
{
"name": tool_call.function.name,
"arguments": json.loads(tool_call.function.arguments),
}
)
if hasattr(delta, "reasoning_content") and delta.reasoning_content:
reasoning += delta.reasoning_content
elif delta.content:
output += delta.content
yield f"*{reasoning}*\n{output}"
if function_calls_to_handle:
for func_call in function_calls_to_handle:
func_result = handle_function_call(
func_call["name"], func_call["arguments"]
)
output += (
f"\n\n**Function Result ({func_call['name']}):**\n{func_result}"
)
yield output
except Exception as e:
print(f"[Error] {e}")
yield "⚠️ Llama.cpp server error"
demo = gr.ChatInterface(respond)
if __name__ == "__main__":
demo.launch(show_api=False)