Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,185 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
)
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
def recognize(audio, selected_model):
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
import numpy as np
|
| 5 |
+
import scipy.io.wavfile as wav
|
| 6 |
+
from scipy.fftpack import idct
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import os
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
|
| 12 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 13 |
+
print(f"Using device: {device}")
|
| 14 |
+
|
| 15 |
+
# Modele CNN
|
| 16 |
+
class modele_CNN(nn.Module):
|
| 17 |
+
def __init__(self, num_classes=8, dropout=0.3):
|
| 18 |
+
super(modele_CNN, self).__init__()
|
| 19 |
+
self.conv1 = nn.Conv2d(1, 16, 3, padding=1)
|
| 20 |
+
self.conv2 = nn.Conv2d(16, 32, 3, padding=1)
|
| 21 |
+
self.conv3 = nn.Conv2d(32, 64, 3, padding=1)
|
| 22 |
+
self.pool = nn.MaxPool2d(2, 2)
|
| 23 |
+
self.fc1 = nn.Linear(64 * 1 * 62, 128)
|
| 24 |
+
self.fc2 = nn.Linear(128, num_classes)
|
| 25 |
+
self.dropout = nn.Dropout(dropout)
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
x = self.pool(F.relu(self.conv1(x)))
|
| 29 |
+
x = self.pool(F.relu(self.conv2(x)))
|
| 30 |
+
x = self.pool(F.relu(self.conv3(x)))
|
| 31 |
+
x = x.view(x.size(0), -1)
|
| 32 |
+
x = self.dropout(F.relu(self.fc1(x)))
|
| 33 |
+
x = self.fc2(x)
|
| 34 |
+
return x
|
| 35 |
+
|
| 36 |
+
# Audio processor
|
| 37 |
+
class AudioProcessor:
|
| 38 |
+
def Mel2Hz(self, mel): return 700 * (np.power(10, mel/2595)-1)
|
| 39 |
+
def Hz2Mel(self, freq): return 2595 * np.log10(1+freq/700)
|
| 40 |
+
def Hz2Ind(self, freq, fs, Tfft): return (freq*Tfft/fs).astype(int)
|
| 41 |
+
|
| 42 |
+
def hamming(self, T):
|
| 43 |
+
if T <= 1:
|
| 44 |
+
return np.ones(T)
|
| 45 |
+
return 0.54-0.46*np.cos(2*np.pi*np.arange(T)/(T-1))
|
| 46 |
+
|
| 47 |
+
def FiltresMel(self, fs, nf=36, Tfft=512, fmin=100, fmax=8000):
|
| 48 |
+
Indices = self.Hz2Ind(self.Mel2Hz(np.linspace(self.Hz2Mel(fmin), self.Hz2Mel(min(fmax, fs/2)), nf+2)), fs, Tfft)
|
| 49 |
+
filtres = np.zeros((int(Tfft/2), nf))
|
| 50 |
+
for i in range(nf): filtres[Indices[i]:Indices[i+2], i] = self.hamming(Indices[i+2]-Indices[i])
|
| 51 |
+
return filtres
|
| 52 |
+
|
| 53 |
+
def spectrogram(self, x, T, p, Tfft):
|
| 54 |
+
S = []
|
| 55 |
+
for i in range(0, len(x)-T, p): S.append(x[i:i+T]*self.hamming(T))
|
| 56 |
+
S = np.fft.fft(S, Tfft)
|
| 57 |
+
return np.abs(S), np.angle(S)
|
| 58 |
+
|
| 59 |
+
def mfcc(self, data, filtres, nc=13, T=256, p=64, Tfft=512):
|
| 60 |
+
data = (data[1]-np.mean(data[1]))/np.std(data[1])
|
| 61 |
+
amp, ph = self.spectrogram(data, T, p, Tfft)
|
| 62 |
+
amp_f = np.log10(np.dot(amp[:, :int(Tfft/2)], filtres)+1)
|
| 63 |
+
return idct(amp_f, n=nc, norm='ortho')
|
| 64 |
+
|
| 65 |
+
def process_audio(self, audio_data, sr, audio_length=32000):
|
| 66 |
+
if sr != 16000:
|
| 67 |
+
audio_resampled = np.interp(
|
| 68 |
+
np.linspace(0, len(audio_data), int(16000 * len(audio_data) / sr)),
|
| 69 |
+
np.arange(len(audio_data)),
|
| 70 |
+
audio_data
|
| 71 |
)
|
| 72 |
+
sgn = audio_resampled
|
| 73 |
+
fs = 16000
|
| 74 |
+
else:
|
| 75 |
+
sgn = audio_data
|
| 76 |
+
fs = sr
|
| 77 |
+
|
| 78 |
+
sgn = np.array(sgn, dtype=np.float32)
|
| 79 |
+
|
| 80 |
+
if len(sgn) > audio_length:
|
| 81 |
+
sgn = sgn[:audio_length]
|
| 82 |
+
else:
|
| 83 |
+
sgn = np.pad(sgn, (0, audio_length - len(sgn)), mode='constant')
|
| 84 |
+
|
| 85 |
+
filtres = self.FiltresMel(fs)
|
| 86 |
+
sgn_features = self.mfcc([fs, sgn], filtres)
|
| 87 |
+
|
| 88 |
+
mfcc_tensor = torch.tensor(sgn_features.T, dtype=torch.float32)
|
| 89 |
+
mfcc_tensor = mfcc_tensor.unsqueeze(0).unsqueeze(0)
|
| 90 |
+
|
| 91 |
+
return mfcc_tensor
|
| 92 |
+
|
| 93 |
+
# Fonction prédiction
|
| 94 |
+
def predict_speaker(audio, model, processor):
|
| 95 |
+
if audio is None:
|
| 96 |
+
return "Aucun audio détecté.", None
|
| 97 |
+
|
| 98 |
+
try:
|
| 99 |
+
import soundfile as sf
|
| 100 |
+
audio_data, sr = sf.read(audio) # <- ici tu lis direct l'audio
|
| 101 |
+
input_tensor = processor.process_audio(audio_data, sr)
|
| 102 |
+
|
| 103 |
+
device = next(model.parameters()).device
|
| 104 |
+
input_tensor = input_tensor.to(device)
|
| 105 |
+
|
| 106 |
+
with torch.no_grad():
|
| 107 |
+
output = model(input_tensor)
|
| 108 |
+
print(output)
|
| 109 |
+
probabilities = F.softmax(output, dim=1)
|
| 110 |
+
confidence, predicted_class = torch.max(probabilities, 1)
|
| 111 |
+
|
| 112 |
+
speakers = ["George", "Jackson", "Lucas", "Nicolas", "Theo", "Yweweler", "Narimene"]
|
| 113 |
+
predicted_speaker = speakers[predicted_class.item()]
|
| 114 |
+
|
| 115 |
+
result = f"Locuteur reconnu : {predicted_speaker} (confiance : {confidence.item()*100:.2f}%)"
|
| 116 |
+
|
| 117 |
+
probs_dict = {speakers[i]: float(probs) for i, probs in enumerate(probabilities[0].cpu().numpy())}
|
| 118 |
+
|
| 119 |
+
return result, probs_dict
|
| 120 |
+
|
| 121 |
+
except Exception as e:
|
| 122 |
+
return f"Erreur : {str(e)}", None
|
| 123 |
+
|
| 124 |
+
# Charger modèle
|
| 125 |
+
def load_model(model_id="nareauow/my_speech_recognition", model_filename="model_3.pth"):
|
| 126 |
+
try:
|
| 127 |
+
model_path = hf_hub_download(repo_id=model_id, filename=model_filename)
|
| 128 |
+
model = modele_CNN(num_classes=7, dropout=0.)
|
| 129 |
+
model.load_state_dict(torch.load(model_path, map_location=device))
|
| 130 |
+
model.to(device)
|
| 131 |
+
model.eval()
|
| 132 |
+
print("Modèle chargé avec succès !")
|
| 133 |
+
return model
|
| 134 |
+
except Exception as e:
|
| 135 |
+
print(f"Erreur de chargement: {e}")
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
# Gradio Interface
|
| 139 |
+
def create_interface():
|
| 140 |
+
processor = AudioProcessor()
|
| 141 |
+
|
| 142 |
+
with gr.Blocks(title="Reconnaissance de Locuteur") as interface:
|
| 143 |
+
gr.Markdown("# 🗣️ Reconnaissance de Locuteur")
|
| 144 |
+
gr.Markdown("Enregistrez votre voix pendant 2 secondes pour identifier qui parle.")
|
| 145 |
+
|
| 146 |
+
with gr.Row():
|
| 147 |
+
with gr.Column():
|
| 148 |
+
model_selector = gr.Dropdown(
|
| 149 |
+
choices=["model_1.pth", "model_2.pth", "model_3.pth"],
|
| 150 |
+
value="model_3.pth",
|
| 151 |
+
label="Choisissez le modèle"
|
| 152 |
+
)
|
| 153 |
+
audio_input = gr.Audio(sources=["microphone"], type="filepath", label="🎙️ Parlez ici")
|
| 154 |
+
record_btn = gr.Button("Reconnaître")
|
| 155 |
+
with gr.Column():
|
| 156 |
+
result_text = gr.Textbox(label="Résultat")
|
| 157 |
+
plot_output = gr.Plot(label="Confiance par locuteur")
|
| 158 |
+
|
| 159 |
def recognize(audio, selected_model):
|
| 160 |
+
model = load_model(model_filename=selected_model) # Charger le modèle choisi
|
| 161 |
+
res, probs = predict_speaker(audio, model, processor)
|
| 162 |
+
fig = None
|
| 163 |
+
if probs:
|
| 164 |
+
fig, ax = plt.subplots()
|
| 165 |
+
ax.bar(probs.keys(), probs.values(), color='skyblue')
|
| 166 |
+
ax.set_ylim([0, 1])
|
| 167 |
+
ax.set_ylabel("Confiance")
|
| 168 |
+
ax.set_xlabel("Locuteurs")
|
| 169 |
+
plt.xticks(rotation=45)
|
| 170 |
+
return res, fig
|
| 171 |
+
|
| 172 |
+
record_btn.click(fn=recognize, inputs=[audio_input, model_selector], outputs=[result_text, plot_output])
|
| 173 |
+
|
| 174 |
+
gr.Markdown("""### Comment utiliser ?
|
| 175 |
+
- Choisissez le modèle.
|
| 176 |
+
- Cliquez sur 🎙️ pour enregistrer votre voix.
|
| 177 |
+
- Cliquez sur **Reconnaître** pour obtenir la prédiction.
|
| 178 |
+
""")
|
| 179 |
+
|
| 180 |
+
return interface
|
| 181 |
+
|
| 182 |
+
# Lancer
|
| 183 |
+
if __name__ == "__main__":
|
| 184 |
+
app = create_interface()
|
| 185 |
+
app.launch(share=True)
|