cidadao.ai-backend / docs /development /maritaca_integration.md
anderson-ufrj
refactor: complete repository reorganization and documentation update
92d464e
|
raw
history blame
6.59 kB

Maritaca AI Integration Guide

Overview

This guide covers the integration of Maritaca AI's Sabiá-3 language model with the Cidadão.AI backend, specifically for use with the Drummond agent for conversational AI and natural language generation in Brazilian Portuguese.

Features

The MaritacaClient provides:

  • Async/await support for all operations
  • Streaming responses for real-time text generation
  • Automatic retry with exponential backoff
  • Rate limit handling with smart retries
  • Circuit breaker pattern for resilience
  • Comprehensive error handling and logging
  • Type hints for better development experience
  • Context manager support for proper resource cleanup

Configuration

Environment Variables

Add the following to your .env file:

# Maritaca AI Configuration
MARITACA_API_KEY=your-api-key-here
MARITACA_API_BASE_URL=https://chat.maritaca.ai/api
MARITACA_MODEL=sabia-3

Available Models

  • sabia-3 - Standard Sabiá-3 model
  • sabia-3-medium - Medium-sized variant
  • sabia-3-large - Large variant for complex tasks

Usage Examples

Basic Chat Completion

from src.services.maritaca_client import create_maritaca_client

async def example():
    async with create_maritaca_client(api_key="your-key") as client:
        response = await client.chat_completion(
            messages=[
                {"role": "user", "content": "Olá, como você está?"}
            ],
            temperature=0.7,
            max_tokens=100
        )
        print(response.content)

Streaming Response

async def streaming_example():
    async with create_maritaca_client(api_key="your-key") as client:
        async for chunk in await client.chat_completion(
            messages=[{"role": "user", "content": "Conte uma história"}],
            stream=True
        ):
            print(chunk, end="", flush=True)

Integration with LLM Manager

from src.llm.providers import LLMManager, LLMProvider, LLMRequest

# Configure with Maritaca as primary provider
manager = LLMManager(
    primary_provider=LLMProvider.MARITACA,
    fallback_providers=[LLMProvider.GROQ, LLMProvider.TOGETHER]
)

request = LLMRequest(
    messages=[{"role": "user", "content": "Analyze government spending"}],
    temperature=0.7,
    max_tokens=500
)

response = await manager.complete(request)

Drummond Agent Integration

The Drummond agent can now use Maritaca AI for natural language generation:

from src.agents.drummond import CommunicationAgent, AgentContext

context = AgentContext(
    user_id="user123",
    session_id="session456",
    metadata={
        "llm_provider": "maritaca",
        "llm_model": "sabia-3"
    }
)

drummond = CommunicationAgent()
# Agent will automatically use Maritaca for NLG tasks

API Reference

MaritacaClient

Constructor Parameters

  • api_key (str): Your Maritaca AI API key
  • base_url (str): API base URL (default: "https://chat.maritaca.ai/api")
  • model (str): Default model to use (default: "sabia-3")
  • timeout (int): Request timeout in seconds (default: 60)
  • max_retries (int): Maximum retry attempts (default: 3)
  • circuit_breaker_threshold (int): Failures before circuit opens (default: 5)
  • circuit_breaker_timeout (int): Circuit reset time in seconds (default: 60)

Methods

chat_completion()

Create a chat completion with Maritaca AI.

Parameters:

  • messages: List of conversation messages
  • model: Optional model override
  • temperature: Sampling temperature (0.0-2.0)
  • max_tokens: Maximum tokens to generate
  • top_p: Top-p sampling parameter
  • frequency_penalty: Frequency penalty (-2.0 to 2.0)
  • presence_penalty: Presence penalty (-2.0 to 2.0)
  • stop: List of stop sequences
  • stream: Enable streaming response

Returns:

  • MaritacaResponse for non-streaming
  • AsyncGenerator[str, None] for streaming
health_check()

Check Maritaca AI service health.

Returns:

  • Dictionary with status information

Error Handling

The client handles various error scenarios:

from src.core.exceptions import LLMError, LLMRateLimitError

try:
    response = await client.chat_completion(messages)
except LLMRateLimitError as e:
    # Handle rate limiting
    retry_after = e.details.get("retry_after", 60)
    await asyncio.sleep(retry_after)
except LLMError as e:
    # Handle other API errors
    logger.error(f"Maritaca error: {e}")

Circuit Breaker

The circuit breaker protects against cascading failures:

  1. Closed State: Normal operation
  2. Open State: After threshold failures, requests fail immediately
  3. Reset: After timeout, circuit closes and requests resume

Performance Considerations

  • Connection Pooling: Client maintains up to 20 connections
  • Keep-alive: Connections stay alive for 30 seconds
  • Streaming: Use for long responses to improve perceived latency
  • Retry Strategy: Exponential backoff prevents overwhelming the API

Testing

Run the test suite:

# Unit tests
pytest tests/unit/test_maritaca_client.py -v

# Integration example
python examples/maritaca_drummond_integration.py

Best Practices

  1. Always use context managers to ensure proper cleanup
  2. Set appropriate timeouts based on expected response times
  3. Use streaming for long-form content generation
  4. Monitor circuit breaker status in production
  5. Implement proper error handling for all API calls
  6. Cache responses when appropriate to reduce API calls

Troubleshooting

Common Issues

  1. Circuit Breaker Open

    • Check API status
    • Review recent error logs
    • Wait for circuit reset timeout
  2. Rate Limiting

    • Implement request queuing
    • Use retry-after header
    • Consider upgrading API plan
  3. Timeout Errors

    • Increase timeout for complex requests
    • Use streaming for long responses
    • Check network connectivity

Debug Logging

Enable debug logs:

import logging
logging.getLogger("src.services.maritaca_client").setLevel(logging.DEBUG)

Security Notes

  • Never commit API keys to version control
  • Use environment variables for sensitive data
  • Rotate keys regularly in production
  • Monitor API usage for anomalies

Support

For Maritaca AI specific issues:

For Cidadão.AI integration issues:

  • Create an issue in the project repository
  • Check the logs for detailed error information