cidadao.ai-backend / src /infrastructure /monitoring_service.py
anderson-ufrj
refactor(performance): replace all json imports with json_utils
9730fbc
"""
Sistema de Monitoramento e Observabilidade Enterprise
OpenTelemetry, Prometheus, Distributed Tracing, Health Checks Avançados
"""
import asyncio
import time
import logging
import threading
from typing import Dict, List, Optional, Any, Callable, Union
from datetime import datetime, timedelta
from contextlib import asynccontextmanager
from functools import wraps
from src.core import json_utils
import psutil
import traceback
from enum import Enum
# Try to import OpenTelemetry, use stubs if not available
try:
from opentelemetry import trace, metrics
from opentelemetry.exporter.jaeger.thrift import JaegerExporter
from opentelemetry.exporter.prometheus import PrometheusMetricReader
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.sdk.metrics import MeterProvider
from opentelemetry.sdk.resources import Resource
from opentelemetry.instrumentation.fastapi import FastAPIInstrumentor
from opentelemetry.instrumentation.httpx import HTTPXClientInstrumentor
from opentelemetry.instrumentation.redis import RedisInstrumentor
from opentelemetry.instrumentation.sqlalchemy import SQLAlchemyInstrumentor
OPENTELEMETRY_AVAILABLE = True
except ImportError:
# Use minimal implementation
OPENTELEMETRY_AVAILABLE = False
from src.core.monitoring_minimal import MockTracer as trace
class MockInstrumentor:
@staticmethod
def instrument(*args, **kwargs):
pass
FastAPIInstrumentor = HTTPXClientInstrumentor = RedisInstrumentor = SQLAlchemyInstrumentor = MockInstrumentor
from prometheus_client import Counter, Histogram, Gauge, CollectorRegistry, generate_latest
from pydantic import BaseModel, Field
import structlog
logger = structlog.get_logger(__name__)
class HealthStatus(Enum):
"""Status de saúde dos componentes"""
HEALTHY = "healthy"
DEGRADED = "degraded"
UNHEALTHY = "unhealthy"
UNKNOWN = "unknown"
class MetricType(Enum):
"""Tipos de métricas"""
COUNTER = "counter"
HISTOGRAM = "histogram"
GAUGE = "gauge"
SUMMARY = "summary"
class MonitoringConfig(BaseModel):
"""Configuração do sistema de monitoramento"""
# Service information
service_name: str = "cidadao-ai"
service_version: str = "1.0.0"
environment: str = "production"
# OpenTelemetry
jaeger_endpoint: str = "http://localhost:14268/api/traces"
enable_tracing: bool = True
trace_sample_rate: float = 1.0
# Prometheus
prometheus_port: int = 8000
enable_metrics: bool = True
metrics_path: str = "/metrics"
# Health checks
health_check_interval: int = 30
health_check_timeout: int = 5
enable_deep_health_checks: bool = True
# Performance monitoring
slow_query_threshold_ms: float = 1000.0
high_memory_threshold_mb: float = 1024.0
high_cpu_threshold_percent: float = 80.0
# Alerting
enable_alerting: bool = True
alert_webhook_url: Optional[str] = None
class PerformanceMetrics(BaseModel):
"""Métricas de performance do sistema"""
# System metrics
cpu_usage_percent: float
memory_usage_mb: float
memory_usage_percent: float
disk_usage_percent: float
# Application metrics
active_investigations: int
total_requests: int
failed_requests: int
average_response_time_ms: float
# ML metrics
ml_inference_time_ms: float
anomalies_detected: int
detection_accuracy: float
# Database metrics
db_connections_active: int
db_query_time_ms: float
cache_hit_rate: float
# Timestamp
timestamp: datetime = Field(default_factory=datetime.utcnow)
class AlertSeverity(Enum):
"""Severidade dos alertas"""
INFO = "info"
WARNING = "warning"
ERROR = "error"
CRITICAL = "critical"
class Alert(BaseModel):
"""Modelo de alerta"""
id: str
title: str
description: str
severity: AlertSeverity
component: str
metric_name: str
metric_value: float
threshold: float
timestamp: datetime = Field(default_factory=datetime.utcnow)
resolved: bool = False
resolution_time: Optional[datetime] = None
class HealthCheck(BaseModel):
"""Resultado de health check"""
component: str
status: HealthStatus
details: Dict[str, Any] = Field(default_factory=dict)
latency_ms: Optional[float] = None
last_check: datetime = Field(default_factory=datetime.utcnow)
error_message: Optional[str] = None
class ObservabilityManager:
"""Gerenciador avançado de observabilidade e monitoramento"""
def __init__(self, config: MonitoringConfig):
self.config = config
self.tracer = None
self.meter = None
self.registry = CollectorRegistry()
# Health checks
self.health_checks: Dict[str, HealthCheck] = {}
self.health_check_functions: Dict[str, Callable] = {}
# Metrics
self.metrics: Dict[str, Any] = {}
self.performance_history: List[PerformanceMetrics] = []
# Alerts
self.active_alerts: Dict[str, Alert] = {}
self.alert_history: List[Alert] = []
# Performance tracking
self.request_times: List[float] = []
self.ml_inference_times: List[float] = []
self._monitoring_task = None
self._initialized = False
async def initialize(self) -> bool:
"""Inicializar sistema de monitoramento"""
try:
logger.info("Inicializando sistema de observabilidade...")
# Setup OpenTelemetry
await self._setup_tracing()
# Setup Prometheus metrics
await self._setup_metrics()
# Setup health checks
await self._setup_health_checks()
# Start monitoring loop
await self._start_monitoring_loop()
self._initialized = True
logger.info("✅ Sistema de observabilidade inicializado")
return True
except Exception as e:
logger.error(f"❌ Falha na inicialização do monitoramento: {e}")
return False
async def _setup_tracing(self):
"""Configurar distributed tracing"""
if not self.config.enable_tracing:
return
# Resource information
resource = Resource.create({
"service.name": self.config.service_name,
"service.version": self.config.service_version,
"deployment.environment": self.config.environment
})
# Tracer provider
trace.set_tracer_provider(TracerProvider(resource=resource))
# Jaeger exporter
jaeger_exporter = JaegerExporter(
endpoint=self.config.jaeger_endpoint
)
# Span processor
span_processor = BatchSpanProcessor(jaeger_exporter)
trace.get_tracer_provider().add_span_processor(span_processor)
# Get tracer
self.tracer = trace.get_tracer(__name__)
# Auto-instrumentation
FastAPIInstrumentor.instrument()
HTTPXClientInstrumentor.instrument()
RedisInstrumentor.instrument()
SQLAlchemyInstrumentor.instrument()
logger.info("✅ Distributed tracing configurado")
async def _setup_metrics(self):
"""Configurar métricas Prometheus"""
if not self.config.enable_metrics:
return
# Prometheus metrics
self.metrics = {
# HTTP metrics
"http_requests_total": Counter(
"http_requests_total",
"Total HTTP requests",
["method", "endpoint", "status"],
registry=self.registry
),
"http_request_duration": Histogram(
"http_request_duration_seconds",
"HTTP request duration",
["method", "endpoint"],
registry=self.registry
),
# ML metrics
"ml_inference_duration": Histogram(
"ml_inference_duration_seconds",
"ML inference duration",
["model", "task"],
registry=self.registry
),
"anomalies_detected_total": Counter(
"anomalies_detected_total",
"Total anomalies detected",
["severity"],
registry=self.registry
),
# System metrics
"cpu_usage_percent": Gauge(
"cpu_usage_percent",
"CPU usage percentage",
registry=self.registry
),
"memory_usage_bytes": Gauge(
"memory_usage_bytes",
"Memory usage in bytes",
registry=self.registry
),
# Investigation metrics
"active_investigations": Gauge(
"active_investigations",
"Number of active investigations",
registry=self.registry
),
"investigation_duration": Histogram(
"investigation_duration_seconds",
"Investigation duration",
["status"],
registry=self.registry
),
# Database metrics
"db_connections_active": Gauge(
"db_connections_active",
"Active database connections",
registry=self.registry
),
"cache_hit_rate": Gauge(
"cache_hit_rate",
"Cache hit rate",
["cache_type"],
registry=self.registry
)
}
logger.info("✅ Métricas Prometheus configuradas")
async def _setup_health_checks(self):
"""Configurar health checks"""
# Register default health checks
self.register_health_check("system", self._check_system_health)
self.register_health_check("database", self._check_database_health)
self.register_health_check("redis", self._check_redis_health)
self.register_health_check("ml_models", self._check_ml_models_health)
logger.info("✅ Health checks configurados")
async def _start_monitoring_loop(self):
"""Iniciar loop de monitoramento contínuo"""
async def monitoring_loop():
while True:
try:
await self._collect_performance_metrics()
await self._run_health_checks()
await self._check_alerts()
await asyncio.sleep(self.config.health_check_interval)
except Exception as e:
logger.error(f"❌ Erro no loop de monitoramento: {e}")
await asyncio.sleep(5)
self._monitoring_task = asyncio.create_task(monitoring_loop())
logger.info("✅ Loop de monitoramento iniciado")
def register_health_check(self, name: str, check_function: Callable):
"""Registrar função de health check"""
self.health_check_functions[name] = check_function
logger.info(f"✅ Health check '{name}' registrado")
async def _run_health_checks(self):
"""Executar todos os health checks"""
for name, check_function in self.health_check_functions.items():
try:
start_time = time.time()
result = await check_function()
latency = (time.time() - start_time) * 1000
if isinstance(result, dict):
status = result.get("status", HealthStatus.UNKNOWN)
details = result.get("details", {})
error_message = result.get("error")
else:
status = HealthStatus.HEALTHY if result else HealthStatus.UNHEALTHY
details = {}
error_message = None
self.health_checks[name] = HealthCheck(
component=name,
status=status,
details=details,
latency_ms=round(latency, 2),
error_message=error_message
)
except Exception as e:
self.health_checks[name] = HealthCheck(
component=name,
status=HealthStatus.UNHEALTHY,
error_message=str(e),
latency_ms=None
)
async def _check_system_health(self) -> Dict[str, Any]:
"""Health check do sistema"""
try:
cpu_percent = psutil.cpu_percent(interval=1)
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
# Update metrics
if "cpu_usage_percent" in self.metrics:
self.metrics["cpu_usage_percent"].set(cpu_percent)
if "memory_usage_bytes" in self.metrics:
self.metrics["memory_usage_bytes"].set(memory.used)
# Determine status
status = HealthStatus.HEALTHY
if cpu_percent > self.config.high_cpu_threshold_percent:
status = HealthStatus.DEGRADED
if memory.percent > 90:
status = HealthStatus.UNHEALTHY
return {
"status": status,
"details": {
"cpu_percent": cpu_percent,
"memory_percent": memory.percent,
"disk_percent": disk.percent,
"load_average": psutil.getloadavg() if hasattr(psutil, 'getloadavg') else None
}
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _check_database_health(self) -> Dict[str, Any]:
"""Health check do banco de dados"""
try:
# Import here to avoid circular dependency
from .database import get_database_manager
db = await get_database_manager()
health_status = await db.get_health_status()
# Determine overall status
pg_healthy = health_status["postgresql"]["status"] == "healthy"
redis_healthy = health_status["redis"]["status"] == "healthy"
if pg_healthy and redis_healthy:
status = HealthStatus.HEALTHY
elif pg_healthy or redis_healthy:
status = HealthStatus.DEGRADED
else:
status = HealthStatus.UNHEALTHY
return {
"status": status,
"details": health_status
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _check_redis_health(self) -> Dict[str, Any]:
"""Health check específico do Redis"""
try:
from .database import get_database_manager
db = await get_database_manager()
start_time = time.time()
await db.redis_cluster.ping()
latency = (time.time() - start_time) * 1000
status = HealthStatus.HEALTHY if latency < 100 else HealthStatus.DEGRADED
return {
"status": status,
"details": {
"latency_ms": round(latency, 2),
"connection_pool": "active"
}
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _check_ml_models_health(self) -> Dict[str, Any]:
"""Health check dos modelos ML"""
try:
# Check if Cidadão.AI is available
from ..ml.hf_integration import get_cidadao_manager
manager = get_cidadao_manager()
model_info = manager.get_model_info()
if model_info.get("status") == "loaded":
status = HealthStatus.HEALTHY
else:
status = HealthStatus.UNHEALTHY
return {
"status": status,
"details": model_info
}
except Exception as e:
return {
"status": HealthStatus.UNHEALTHY,
"error": str(e)
}
async def _collect_performance_metrics(self):
"""Coletar métricas de performance"""
try:
# System metrics
cpu_percent = psutil.cpu_percent()
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
# Calculate averages
avg_response_time = sum(self.request_times[-100:]) / len(self.request_times[-100:]) if self.request_times else 0
avg_ml_time = sum(self.ml_inference_times[-50:]) / len(self.ml_inference_times[-50:]) if self.ml_inference_times else 0
# Create metrics object
metrics = PerformanceMetrics(
cpu_usage_percent=cpu_percent,
memory_usage_mb=memory.used / (1024 * 1024),
memory_usage_percent=memory.percent,
disk_usage_percent=disk.percent,
active_investigations=len(getattr(self, '_active_investigations', [])),
total_requests=len(self.request_times),
failed_requests=0, # TODO: track failed requests
average_response_time_ms=avg_response_time * 1000,
ml_inference_time_ms=avg_ml_time * 1000,
anomalies_detected=0, # TODO: track anomalies
detection_accuracy=0.0, # TODO: track accuracy
db_connections_active=0, # TODO: get from DB manager
db_query_time_ms=0.0, # TODO: track query time
cache_hit_rate=0.0 # TODO: get from cache manager
)
# Store metrics
self.performance_history.append(metrics)
# Keep only last 1000 metrics
if len(self.performance_history) > 1000:
self.performance_history = self.performance_history[-1000:]
except Exception as e:
logger.error(f"❌ Erro ao coletar métricas: {e}")
async def _check_alerts(self):
"""Verificar condições de alerta"""
if not self.performance_history:
return
latest_metrics = self.performance_history[-1]
# CPU alert
if latest_metrics.cpu_usage_percent > self.config.high_cpu_threshold_percent:
await self._trigger_alert(
"high_cpu",
"High CPU Usage",
f"CPU usage is {latest_metrics.cpu_usage_percent:.1f}%",
AlertSeverity.WARNING,
"system",
"cpu_usage_percent",
latest_metrics.cpu_usage_percent,
self.config.high_cpu_threshold_percent
)
# Memory alert
if latest_metrics.memory_usage_percent > 85:
await self._trigger_alert(
"high_memory",
"High Memory Usage",
f"Memory usage is {latest_metrics.memory_usage_percent:.1f}%",
AlertSeverity.ERROR,
"system",
"memory_usage_percent",
latest_metrics.memory_usage_percent,
85.0
)
# Response time alert
if latest_metrics.average_response_time_ms > self.config.slow_query_threshold_ms:
await self._trigger_alert(
"slow_response",
"Slow Response Time",
f"Average response time is {latest_metrics.average_response_time_ms:.1f}ms",
AlertSeverity.WARNING,
"api",
"average_response_time_ms",
latest_metrics.average_response_time_ms,
self.config.slow_query_threshold_ms
)
async def _trigger_alert(self, alert_id: str, title: str, description: str,
severity: AlertSeverity, component: str,
metric_name: str, metric_value: float, threshold: float):
"""Disparar alerta"""
# Check if alert already active
if alert_id in self.active_alerts:
return
alert = Alert(
id=alert_id,
title=title,
description=description,
severity=severity,
component=component,
metric_name=metric_name,
metric_value=metric_value,
threshold=threshold
)
self.active_alerts[alert_id] = alert
self.alert_history.append(alert)
logger.warning(f"🚨 ALERTA: {title} - {description}")
# Send webhook if configured
if self.config.alert_webhook_url:
await self._send_alert_webhook(alert)
async def _send_alert_webhook(self, alert: Alert):
"""Enviar alerta via webhook"""
try:
import httpx
payload = {
"alert_id": alert.id,
"title": alert.title,
"description": alert.description,
"severity": alert.severity.value,
"component": alert.component,
"timestamp": alert.timestamp.isoformat(),
"metric": {
"name": alert.metric_name,
"value": alert.metric_value,
"threshold": alert.threshold
}
}
async with httpx.AsyncClient() as client:
response = await client.post(
self.config.alert_webhook_url,
json=payload,
timeout=10.0
)
if response.status_code == 200:
logger.info(f"✅ Alerta {alert.id} enviado via webhook")
else:
logger.error(f"❌ Falha ao enviar alerta via webhook: {response.status_code}")
except Exception as e:
logger.error(f"❌ Erro ao enviar webhook: {e}")
@asynccontextmanager
async def trace_span(self, name: str, attributes: Dict[str, Any] = None):
"""Context manager para criar spans de tracing"""
if not self.tracer:
yield None
return
with self.tracer.start_as_current_span(name) as span:
if attributes:
for key, value in attributes.items():
span.set_attribute(key, value)
yield span
def track_request_time(self, duration_seconds: float):
"""Rastrear tempo de request"""
self.request_times.append(duration_seconds)
# Keep only last 1000
if len(self.request_times) > 1000:
self.request_times = self.request_times[-1000:]
def track_ml_inference_time(self, duration_seconds: float, model: str = "cidadao-gpt"):
"""Rastrear tempo de inferência ML"""
self.ml_inference_times.append(duration_seconds)
# Update Prometheus metric
if "ml_inference_duration" in self.metrics:
self.metrics["ml_inference_duration"].labels(
model=model,
task="inference"
).observe(duration_seconds)
# Keep only last 500
if len(self.ml_inference_times) > 500:
self.ml_inference_times = self.ml_inference_times[-500:]
def increment_anomaly_count(self, severity: str = "medium"):
"""Incrementar contador de anomalias"""
if "anomalies_detected_total" in self.metrics:
self.metrics["anomalies_detected_total"].labels(severity=severity).inc()
async def get_health_summary(self) -> Dict[str, Any]:
"""Obter resumo de saúde do sistema"""
overall_status = HealthStatus.HEALTHY
# Check individual components
for component, health in self.health_checks.items():
if health.status == HealthStatus.UNHEALTHY:
overall_status = HealthStatus.UNHEALTHY
break
elif health.status == HealthStatus.DEGRADED and overall_status == HealthStatus.HEALTHY:
overall_status = HealthStatus.DEGRADED
return {
"overall_status": overall_status.value,
"components": {name: health.dict() for name, health in self.health_checks.items()},
"active_alerts": len(self.active_alerts),
"last_check": datetime.utcnow().isoformat(),
"uptime_seconds": time.time() - getattr(self, '_start_time', time.time())
}
async def get_metrics_summary(self) -> Dict[str, Any]:
"""Obter resumo de métricas"""
if not self.performance_history:
return {"error": "No metrics available"}
latest = self.performance_history[-1]
return {
"timestamp": latest.timestamp.isoformat(),
"system": {
"cpu_usage_percent": latest.cpu_usage_percent,
"memory_usage_mb": latest.memory_usage_mb,
"memory_usage_percent": latest.memory_usage_percent,
"disk_usage_percent": latest.disk_usage_percent
},
"application": {
"active_investigations": latest.active_investigations,
"total_requests": latest.total_requests,
"average_response_time_ms": latest.average_response_time_ms,
"ml_inference_time_ms": latest.ml_inference_time_ms
},
"alerts": {
"active_count": len(self.active_alerts),
"total_count": len(self.alert_history)
}
}
def get_prometheus_metrics(self) -> str:
"""Obter métricas no formato Prometheus"""
return generate_latest(self.registry)
async def cleanup(self):
"""Cleanup de recursos"""
try:
if self._monitoring_task:
self._monitoring_task.cancel()
try:
await self._monitoring_task
except asyncio.CancelledError:
pass
logger.info("✅ Cleanup do sistema de monitoramento concluído")
except Exception as e:
logger.error(f"❌ Erro no cleanup: {e}")
# Singleton instance
_monitoring_manager: Optional[ObservabilityManager] = None
async def get_monitoring_manager() -> ObservabilityManager:
"""Obter instância singleton do monitoring manager"""
global _monitoring_manager
if _monitoring_manager is None or not _monitoring_manager._initialized:
config = MonitoringConfig()
_monitoring_manager = ObservabilityManager(config)
await _monitoring_manager.initialize()
return _monitoring_manager
def trace_async(span_name: str = None, attributes: Dict[str, Any] = None):
"""Decorator para tracing automático de funções async"""
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
monitoring = await get_monitoring_manager()
name = span_name or f"{func.__module__}.{func.__name__}"
async with monitoring.trace_span(name, attributes) as span:
try:
start_time = time.time()
result = await func(*args, **kwargs)
duration = time.time() - start_time
if span:
span.set_attribute("duration_seconds", duration)
span.set_attribute("success", True)
return result
except Exception as e:
if span:
span.set_attribute("error", True)
span.set_attribute("error_message", str(e))
raise
return wrapper
return decorator
async def cleanup_monitoring():
"""Cleanup global do sistema de monitoramento"""
global _monitoring_manager
if _monitoring_manager:
await _monitoring_manager.cleanup()
_monitoring_manager = None
if __name__ == "__main__":
# Teste do sistema
import asyncio
async def test_monitoring_system():
"""Teste completo do sistema de monitoramento"""
print("🧪 Testando sistema de monitoramento...")
# Inicializar
monitoring = await get_monitoring_manager()
# Simulate some activity
monitoring.track_request_time(0.15)
monitoring.track_ml_inference_time(0.5)
monitoring.increment_anomaly_count("high")
# Wait for health checks
await asyncio.sleep(2)
# Get health summary
health = await monitoring.get_health_summary()
print(f"✅ Health summary: {health['overall_status']}")
# Get metrics summary
metrics = await monitoring.get_metrics_summary()
print(f"✅ Metrics summary: {metrics.get('system', {}).get('cpu_usage_percent', 'N/A')}% CPU")
# Test tracing
@trace_async("test_function")
async def test_traced_function():
await asyncio.sleep(0.1)
return "success"
result = await test_traced_function()
print(f"✅ Traced function result: {result}")
# Cleanup
await cleanup_monitoring()
print("✅ Teste concluído!")
asyncio.run(test_monitoring_system())