File size: 17,602 Bytes
18a82b5
caed98f
 
 
 
 
333b3ca
caed98f
864db86
caed98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864db86
caed98f
 
 
864db86
caed98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864db86
caed98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
864db86
caed98f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18a82b5
 
 
caed98f
18a82b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import gradio as gr
from pydantic import BaseModel, field_validator
from typing import List, Optional, Dict, Any
import numpy as np
import random
import json
import spaces


class BaselineRequest(BaseModel):
    task: str  # "classification", "regression", "generation", "chess_moves"
    dataset_size: int
    output_format: str  # "categorical", "continuous", "sequence"
    classes: Optional[List[str]] = None
    num_classes: Optional[int] = None
    sequence_length: Optional[int] = None
    target_distribution: Optional[Dict[str, float]] = None

    @field_validator('dataset_size')
    def size_must_be_positive(cls, v):
        if v <= 0:
            raise ValueError('Dataset size must be positive')
        return v


class BaselineResponse(BaseModel):
    task: str
    baseline_type: str
    metrics: Dict[str, Any]
    sample_predictions: List[Any]
    reality_check: str
    advice: str


def generate_random_classification(request: BaselineRequest):
    """Generate random classification baseline"""
    if request.classes:
        num_classes = len(request.classes)
        class_names = request.classes
    else:
        num_classes = request.num_classes or 2
        class_names = [f"class_{i}" for i in range(num_classes)]
    
    # Ensure num_classes is not zero
    if num_classes == 0:
        num_classes = 1
        class_names = ["default_class"]

    # Generate random predictions
    if request.target_distribution:
        # Use provided distribution
        weights = [request.target_distribution.get(cls, 1/num_classes) for cls in class_names]
        try:
            predictions = random.choices(class_names, weights=weights, k=request.dataset_size)
        except ValueError: # Handle all-zero weights
             predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
    else:
        # Uniform random
        predictions = [random.choice(class_names) for _ in range(request.dataset_size)]

    # Calculate expected accuracy for uniform random
    expected_accuracy = 1 / num_classes

    return {
        "baseline_type": "uniform_random" if not request.target_distribution else "weighted_random",
        "metrics": {
            "expected_accuracy": round(expected_accuracy, 4),
            "expected_f1": round(expected_accuracy, 4),  # Simplified for uniform case
            "num_classes": num_classes
        },
        "sample_predictions": predictions[:10],
        "reality_check": f"Random guessing should get ~{expected_accuracy:.1%} accuracy. If your model doesn't beat this by a significant margin, it's probably garbage.",
        "advice": "Train a simple baseline (logistic regression, random forest) before going neural. Save yourself the GPU bills."
    }

def generate_random_regression(request: BaselineRequest):
    """Generate random regression baseline"""
    # Generate random continuous values
    predictions = np.random.normal(0, 1, request.dataset_size)

    return {
        "baseline_type": "gaussian_random",
        "metrics": {
            "mean": round(float(np.mean(predictions)), 4),
            "std": round(float(np.std(predictions)), 4),
            "range": [round(float(np.min(predictions)), 4), round(float(np.max(predictions)), 4)]
        },
        "sample_predictions": predictions[:10].tolist(),
        "reality_check": "Random regression predictions have infinite MSE against any reasonable target. If your model's MSE isn't dramatically better, you're wasting compute.",
        "advice": "Start with mean prediction baseline, then linear regression. Neural networks are overkill for most regression problems."
    }

def generate_random_sequence(request: BaselineRequest):
    """Generate random sequence baseline (like text/chess moves)"""
    vocab_size = len(request.classes) if request.classes else 1000
    if vocab_size == 0: # Handle empty vocab
        vocab_size = 1
        
    seq_len = request.sequence_length or 50

    sequences = []
    for _ in range(min(10, request.dataset_size)):
        if request.classes:
            seq = [random.choice(request.classes) for _ in range(seq_len)]
        else:
            seq = [random.randint(0, vocab_size-1) for _ in range(seq_len)]
        sequences.append(seq)

    perplexity = vocab_size  # Worst case perplexity for uniform random

    return {
        "baseline_type": "uniform_random_sequence",
        "metrics": {
            "perplexity": perplexity,
            "sequence_length": seq_len,
            "vocab_size": vocab_size
        },
        "sample_predictions": sequences,
        "reality_check": f"Random sequences have perplexity ~{perplexity}. If your language model doesn't crush this, it learned nothing.",
        "advice": "Even a bigram model should destroy random baselines. If it doesn't, check your data preprocessing."
    }

# Special handlers (from original app)
TASK_HANDLERS = {
    "chess_moves": lambda req: generate_random_sequence(BaselineRequest(
        task="chess_moves",
        dataset_size=req.dataset_size,
        output_format="sequence",
        classes=["e4", "d4", "Nf3", "c4", "g3", "Nc3", "f4", "e3"],  # Common opening moves
        sequence_length=1
    )),
    "sentiment": lambda req: generate_random_classification(BaselineRequest(
        task="sentiment",
        dataset_size=req.dataset_size,
        output_format="categorical",
        classes=["positive", "negative", "neutral"]
    )),
    "image_classification": lambda req: generate_random_classification(BaselineRequest(
        task="image_classification",
        dataset_size=req.dataset_size,
        output_format="categorical",
        num_classes=req.num_classes or 1000  # ImageNet default
    ))
}

# Roast logic (from original app)
ROASTS = [
    "Your neural network is just an expensive random number generator.",
    "I bet your model's accuracy is 50.1% and you're calling it 'promising results'.",
    "Random guessing doesn't need 8 GPUs and a PhD to run.",
    "Your transformer probably learned to predict the dataset bias, not the actual task.",
    "If random baseline beats your model, maybe try a different career?",
    "Your model: 47% accuracy. Random baseline: 50%. Congratulations, you made it worse.",
]

def get_roast():
    """Get roasted for probably having a model worse than random"""
    return random.choice(ROASTS)


def handle_classification(task_choice, dataset_size, num_classes, classes_str, dist_str):
    """Gradio handler for the classification tab"""
    try:
        # 1. Parse Inputs
        task_name = task_choice
        if task_choice == "image_classification (1000 class)":
            task_name = "image_classification"
            num_classes = 1000 # Override
            
        classes_list = [c.strip() for c in classes_str.split(',')] if classes_str else None
        
        target_dist = None
        if dist_str:
            try:
                target_dist = json.loads(dist_str)
                if not isinstance(target_dist, dict):
                    raise ValueError("JSON must be an object/dictionary.")
            except json.JSONDecodeError as e:
                raise gr.Error(f"Invalid JSON in target distribution: {e}")
            except ValueError as e:
                raise gr.Error(str(e))

        # 2. Build Request
        request = BaselineRequest(
            task=task_name,
            dataset_size=int(dataset_size),
            output_format="categorical",
            classes=classes_list,
            num_classes=int(num_classes) if num_classes else None,
            target_distribution=target_dist
        )
        
        # 3. Get Result
        if request.task in TASK_HANDLERS:
            result = TASK_HANDLERS[request.task](request)
        else: # "custom"
            result = generate_random_classification(request)
            
        # 4. Format Output
        response = BaselineResponse(task=request.task, **result)
        return (
            response.task,
            response.baseline_type,
            response.metrics,
            response.sample_predictions,
            response.reality_check,
            response.advice
        )
    except Exception as e:
        raise gr.Error(str(e))


def handle_regression(dataset_size):
    """Gradio handler for the regression tab"""
    try:
        request = BaselineRequest(
            task="regression",
            dataset_size=int(dataset_size),
            output_format="continuous"
        )
        result = generate_random_regression(request)
        response = BaselineResponse(task=request.task, **result)
        return (
            response.task,
            response.baseline_type,
            response.metrics,
            response.sample_predictions,
            response.reality_check,
            response.advice
        )
    except Exception as e:
        raise gr.Error(str(e))


def handle_sequence(task_choice, dataset_size, seq_len, vocab_str):
    """Gradio handler for the generation/sequence tab"""
    try:
        vocab_list = [c.strip() for c in vocab_str.split(',')] if vocab_str else None
        
        request = BaselineRequest(
            task=task_choice,
            dataset_size=int(dataset_size),
            output_format="sequence",
            classes=vocab_list,
            sequence_length=int(seq_len) if seq_len else 50
        )
        
        if request.task in TASK_HANDLERS:
            result = TASK_HANDLERS[request.task](request)
        else: # "custom"
            result = generate_random_sequence(request)
            
        response = BaselineResponse(task=request.task, **result)
        return (
            response.task,
            response.baseline_type,
            response.metrics,
            response.sample_predictions,
            response.reality_check,
            response.advice
        )
    except Exception as e:
        raise gr.Error(str(e))


with gr.Blocks(theme=gr.themes.Soft(), title="Random Baseline API") as demo:
    gr.Markdown(
        """
        # Random Baseline API
        **The most honest ML API in existence. Keeping researchers humble since 2025.**
        
        Get a random baseline for your ML task. Because sometimes you need to know how bad 'bad' really is.
        """
    )
    
    with gr.Tabs():
        # --- Classification Tab ---
        with gr.TabItem("Classification"):
            with gr.Row():
                with gr.Column(scale=1):
                    task_cls = gr.Radio(
                        ["sentiment", "image_classification (1000 class)", "custom"], 
                        label="Task", 
                        value="sentiment"
                    )
                    dataset_size_cls = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
                    
                    # Custom options
                    num_classes_cls = gr.Number(
                        label="Number of Classes (if classes not specified)", 
                        value=10, 
                        visible=False,
                        minimum=1,
                        step=1
                    )
                    classes_cls = gr.Textbox(
                        label="Comma-separated classes (e.g., cat,dog,fish)", 
                        visible=False,
                        placeholder="cat, dog, fish"
                    )
                    dist_cls = gr.Textbox(
                        label='JSON target distribution (e.g., {"cat": 0.8})', 
                        visible=False,
                        placeholder='{"cat": 0.8, "dog": 0.1, "fish": 0.1}'
                    )
                    
                    btn_cls = gr.Button("Get Classification Baseline", variant="primary")
                
                with gr.Column(scale=2):
                    out_task_cls = gr.Textbox(label="Task", interactive=False)
                    out_btype_cls = gr.Textbox(label="Baseline Type", interactive=False)
                    out_metrics_cls = gr.JSON(label="Metrics")
                    out_preds_cls = gr.JSON(label="Sample Predictions")
                    out_reality_cls = gr.Textbox(label="Reality Check", lines=3, interactive=False)
                    out_advice_cls = gr.Textbox(label="Advice", lines=3, interactive=False)

        # --- Regression Tab ---
        with gr.TabItem("Regression"):
            with gr.Row():
                with gr.Column(scale=1):
                    dataset_size_reg = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
                    btn_reg = gr.Button("Get Regression Baseline", variant="primary")
                
                with gr.Column(scale=2):
                    out_task_reg = gr.Textbox(label="Task", interactive=False)
                    out_btype_reg = gr.Textbox(label="Baseline Type", interactive=False)
                    out_metrics_reg = gr.JSON(label="Metrics")
                    out_preds_reg = gr.JSON(label="Sample Predictions")
                    out_reality_reg = gr.Textbox(label="Reality Check", lines=3, interactive=False)
                    out_advice_reg = gr.Textbox(label="Advice", lines=3, interactive=False)

        # --- Generation/Sequence Tab ---
        with gr.TabItem("Generation / Sequence"):
            with gr.Row():
                with gr.Column(scale=1):
                    task_seq = gr.Radio(
                        ["chess_moves", "custom"], 
                        label="Task", 
                        value="chess_moves"
                    )
                    dataset_size_seq = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
                    
                    # Custom options
                    seq_len_seq = gr.Number(label="Sequence Length", value=50, visible=False, minimum=1, step=1)
                    vocab_seq = gr.Textbox(
                        label="Comma-separated vocabulary (e.g., a,b,c)", 
                        visible=False,
                        placeholder="a, b, c, <pad>, <eos>"
                    )
                    
                    btn_seq = gr.Button("Get Sequence Baseline", variant="primary")
                
                with gr.Column(scale=2):
                    out_task_seq = gr.Textbox(label="Task", interactive=False)
                    out_btype_seq = gr.Textbox(label="Baseline Type", interactive=False)
                    out_metrics_seq = gr.JSON(label="Metrics")
                    out_preds_seq = gr.JSON(label="Sample Predictions")
                    out_reality_seq = gr.Textbox(label="Reality Check", lines=3, interactive=False)
                    out_advice_seq = gr.Textbox(label="Advice", lines=3, interactive=False)

        # --- Roast Tab ---
        with gr.TabItem("Roast My Model"):
            gr.Markdown("Feeling too good about your model's 98% accuracy on a balanced dataset? Let us fix that.")
            btn_roast = gr.Button("Roast Me!", variant="stop")
            out_roast = gr.Textbox(label="Your Roast", lines=3, interactive=False)

    
    # --- UI Listeners ---
    
    def update_cls_ui(task):
        """Show/hide custom classification options"""
        if task == "custom":
            return {
                num_classes_cls: gr.update(visible=True, value=10),
                classes_cls: gr.update(visible=True),
                dist_cls: gr.update(visible=True)
            }
        elif task == "image_classification (1000 class)":
             return {
                num_classes_cls: gr.update(visible=False, value=1000),
                classes_cls: gr.update(visible=False),
                dist_cls: gr.update(visible=False)
            }
        else: # sentiment
             return {
                num_classes_cls: gr.update(visible=False),
                classes_cls: gr.update(visible=False),
                dist_cls: gr.update(visible=False)
            }
            
    task_cls.change(
        fn=update_cls_ui, 
        inputs=task_cls, 
        outputs=[num_classes_cls, classes_cls, dist_cls]
    )
    
    def update_seq_ui(task):
        """Show/hide custom sequence options"""
        if task == "custom":
            return {
                seq_len_seq: gr.update(visible=True),
                vocab_seq: gr.update(visible=True)
            }
        else: # chess_moves
            return {
                seq_len_seq: gr.update(visible=False),
                vocab_seq: gr.update(visible=False)
            }
            
    task_seq.change(
        fn=update_seq_ui,
        inputs=task_seq,
        outputs=[seq_len_seq, vocab_seq]
    )

    # Button click handlers
    cls_outputs = [out_task_cls, out_btype_cls, out_metrics_cls, out_preds_cls, out_reality_cls, out_advice_cls]
    btn_cls.click(
        fn=handle_classification,
        inputs=[task_cls, dataset_size_cls, num_classes_cls, classes_cls, dist_cls],
        outputs=cls_outputs
    )
    
    reg_outputs = [out_task_reg, out_btype_reg, out_metrics_reg, out_preds_reg, out_reality_reg, out_advice_reg]
    btn_reg.click(
        fn=handle_regression,
        inputs=[dataset_size_reg],
        outputs=reg_outputs
    )
    
    seq_outputs = [out_task_seq, out_btype_seq, out_metrics_seq, out_preds_seq, out_reality_seq, out_advice_seq]
    btn_seq.click(
        fn=handle_sequence,
        inputs=[task_seq, dataset_size_seq, seq_len_seq, vocab_seq],
        outputs=seq_outputs
    )
    
    btn_roast.click(fn=get_roast, inputs=None, outputs=out_roast)


if __name__ == "__main__":
    print("Starting Gradio app... Access it at http://127.0.0.1:7860 (or the URL shown below)")
    demo.launch()