Spaces:
Sleeping
Sleeping
File size: 17,602 Bytes
18a82b5 caed98f 333b3ca caed98f 864db86 caed98f 864db86 caed98f 864db86 caed98f 864db86 caed98f 864db86 caed98f 18a82b5 caed98f 18a82b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import gradio as gr
from pydantic import BaseModel, field_validator
from typing import List, Optional, Dict, Any
import numpy as np
import random
import json
import spaces
class BaselineRequest(BaseModel):
task: str # "classification", "regression", "generation", "chess_moves"
dataset_size: int
output_format: str # "categorical", "continuous", "sequence"
classes: Optional[List[str]] = None
num_classes: Optional[int] = None
sequence_length: Optional[int] = None
target_distribution: Optional[Dict[str, float]] = None
@field_validator('dataset_size')
def size_must_be_positive(cls, v):
if v <= 0:
raise ValueError('Dataset size must be positive')
return v
class BaselineResponse(BaseModel):
task: str
baseline_type: str
metrics: Dict[str, Any]
sample_predictions: List[Any]
reality_check: str
advice: str
def generate_random_classification(request: BaselineRequest):
"""Generate random classification baseline"""
if request.classes:
num_classes = len(request.classes)
class_names = request.classes
else:
num_classes = request.num_classes or 2
class_names = [f"class_{i}" for i in range(num_classes)]
# Ensure num_classes is not zero
if num_classes == 0:
num_classes = 1
class_names = ["default_class"]
# Generate random predictions
if request.target_distribution:
# Use provided distribution
weights = [request.target_distribution.get(cls, 1/num_classes) for cls in class_names]
try:
predictions = random.choices(class_names, weights=weights, k=request.dataset_size)
except ValueError: # Handle all-zero weights
predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
else:
# Uniform random
predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
# Calculate expected accuracy for uniform random
expected_accuracy = 1 / num_classes
return {
"baseline_type": "uniform_random" if not request.target_distribution else "weighted_random",
"metrics": {
"expected_accuracy": round(expected_accuracy, 4),
"expected_f1": round(expected_accuracy, 4), # Simplified for uniform case
"num_classes": num_classes
},
"sample_predictions": predictions[:10],
"reality_check": f"Random guessing should get ~{expected_accuracy:.1%} accuracy. If your model doesn't beat this by a significant margin, it's probably garbage.",
"advice": "Train a simple baseline (logistic regression, random forest) before going neural. Save yourself the GPU bills."
}
def generate_random_regression(request: BaselineRequest):
"""Generate random regression baseline"""
# Generate random continuous values
predictions = np.random.normal(0, 1, request.dataset_size)
return {
"baseline_type": "gaussian_random",
"metrics": {
"mean": round(float(np.mean(predictions)), 4),
"std": round(float(np.std(predictions)), 4),
"range": [round(float(np.min(predictions)), 4), round(float(np.max(predictions)), 4)]
},
"sample_predictions": predictions[:10].tolist(),
"reality_check": "Random regression predictions have infinite MSE against any reasonable target. If your model's MSE isn't dramatically better, you're wasting compute.",
"advice": "Start with mean prediction baseline, then linear regression. Neural networks are overkill for most regression problems."
}
def generate_random_sequence(request: BaselineRequest):
"""Generate random sequence baseline (like text/chess moves)"""
vocab_size = len(request.classes) if request.classes else 1000
if vocab_size == 0: # Handle empty vocab
vocab_size = 1
seq_len = request.sequence_length or 50
sequences = []
for _ in range(min(10, request.dataset_size)):
if request.classes:
seq = [random.choice(request.classes) for _ in range(seq_len)]
else:
seq = [random.randint(0, vocab_size-1) for _ in range(seq_len)]
sequences.append(seq)
perplexity = vocab_size # Worst case perplexity for uniform random
return {
"baseline_type": "uniform_random_sequence",
"metrics": {
"perplexity": perplexity,
"sequence_length": seq_len,
"vocab_size": vocab_size
},
"sample_predictions": sequences,
"reality_check": f"Random sequences have perplexity ~{perplexity}. If your language model doesn't crush this, it learned nothing.",
"advice": "Even a bigram model should destroy random baselines. If it doesn't, check your data preprocessing."
}
# Special handlers (from original app)
TASK_HANDLERS = {
"chess_moves": lambda req: generate_random_sequence(BaselineRequest(
task="chess_moves",
dataset_size=req.dataset_size,
output_format="sequence",
classes=["e4", "d4", "Nf3", "c4", "g3", "Nc3", "f4", "e3"], # Common opening moves
sequence_length=1
)),
"sentiment": lambda req: generate_random_classification(BaselineRequest(
task="sentiment",
dataset_size=req.dataset_size,
output_format="categorical",
classes=["positive", "negative", "neutral"]
)),
"image_classification": lambda req: generate_random_classification(BaselineRequest(
task="image_classification",
dataset_size=req.dataset_size,
output_format="categorical",
num_classes=req.num_classes or 1000 # ImageNet default
))
}
# Roast logic (from original app)
ROASTS = [
"Your neural network is just an expensive random number generator.",
"I bet your model's accuracy is 50.1% and you're calling it 'promising results'.",
"Random guessing doesn't need 8 GPUs and a PhD to run.",
"Your transformer probably learned to predict the dataset bias, not the actual task.",
"If random baseline beats your model, maybe try a different career?",
"Your model: 47% accuracy. Random baseline: 50%. Congratulations, you made it worse.",
]
def get_roast():
"""Get roasted for probably having a model worse than random"""
return random.choice(ROASTS)
def handle_classification(task_choice, dataset_size, num_classes, classes_str, dist_str):
"""Gradio handler for the classification tab"""
try:
# 1. Parse Inputs
task_name = task_choice
if task_choice == "image_classification (1000 class)":
task_name = "image_classification"
num_classes = 1000 # Override
classes_list = [c.strip() for c in classes_str.split(',')] if classes_str else None
target_dist = None
if dist_str:
try:
target_dist = json.loads(dist_str)
if not isinstance(target_dist, dict):
raise ValueError("JSON must be an object/dictionary.")
except json.JSONDecodeError as e:
raise gr.Error(f"Invalid JSON in target distribution: {e}")
except ValueError as e:
raise gr.Error(str(e))
# 2. Build Request
request = BaselineRequest(
task=task_name,
dataset_size=int(dataset_size),
output_format="categorical",
classes=classes_list,
num_classes=int(num_classes) if num_classes else None,
target_distribution=target_dist
)
# 3. Get Result
if request.task in TASK_HANDLERS:
result = TASK_HANDLERS[request.task](request)
else: # "custom"
result = generate_random_classification(request)
# 4. Format Output
response = BaselineResponse(task=request.task, **result)
return (
response.task,
response.baseline_type,
response.metrics,
response.sample_predictions,
response.reality_check,
response.advice
)
except Exception as e:
raise gr.Error(str(e))
def handle_regression(dataset_size):
"""Gradio handler for the regression tab"""
try:
request = BaselineRequest(
task="regression",
dataset_size=int(dataset_size),
output_format="continuous"
)
result = generate_random_regression(request)
response = BaselineResponse(task=request.task, **result)
return (
response.task,
response.baseline_type,
response.metrics,
response.sample_predictions,
response.reality_check,
response.advice
)
except Exception as e:
raise gr.Error(str(e))
def handle_sequence(task_choice, dataset_size, seq_len, vocab_str):
"""Gradio handler for the generation/sequence tab"""
try:
vocab_list = [c.strip() for c in vocab_str.split(',')] if vocab_str else None
request = BaselineRequest(
task=task_choice,
dataset_size=int(dataset_size),
output_format="sequence",
classes=vocab_list,
sequence_length=int(seq_len) if seq_len else 50
)
if request.task in TASK_HANDLERS:
result = TASK_HANDLERS[request.task](request)
else: # "custom"
result = generate_random_sequence(request)
response = BaselineResponse(task=request.task, **result)
return (
response.task,
response.baseline_type,
response.metrics,
response.sample_predictions,
response.reality_check,
response.advice
)
except Exception as e:
raise gr.Error(str(e))
with gr.Blocks(theme=gr.themes.Soft(), title="Random Baseline API") as demo:
gr.Markdown(
"""
# Random Baseline API
**The most honest ML API in existence. Keeping researchers humble since 2025.**
Get a random baseline for your ML task. Because sometimes you need to know how bad 'bad' really is.
"""
)
with gr.Tabs():
# --- Classification Tab ---
with gr.TabItem("Classification"):
with gr.Row():
with gr.Column(scale=1):
task_cls = gr.Radio(
["sentiment", "image_classification (1000 class)", "custom"],
label="Task",
value="sentiment"
)
dataset_size_cls = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
# Custom options
num_classes_cls = gr.Number(
label="Number of Classes (if classes not specified)",
value=10,
visible=False,
minimum=1,
step=1
)
classes_cls = gr.Textbox(
label="Comma-separated classes (e.g., cat,dog,fish)",
visible=False,
placeholder="cat, dog, fish"
)
dist_cls = gr.Textbox(
label='JSON target distribution (e.g., {"cat": 0.8})',
visible=False,
placeholder='{"cat": 0.8, "dog": 0.1, "fish": 0.1}'
)
btn_cls = gr.Button("Get Classification Baseline", variant="primary")
with gr.Column(scale=2):
out_task_cls = gr.Textbox(label="Task", interactive=False)
out_btype_cls = gr.Textbox(label="Baseline Type", interactive=False)
out_metrics_cls = gr.JSON(label="Metrics")
out_preds_cls = gr.JSON(label="Sample Predictions")
out_reality_cls = gr.Textbox(label="Reality Check", lines=3, interactive=False)
out_advice_cls = gr.Textbox(label="Advice", lines=3, interactive=False)
# --- Regression Tab ---
with gr.TabItem("Regression"):
with gr.Row():
with gr.Column(scale=1):
dataset_size_reg = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
btn_reg = gr.Button("Get Regression Baseline", variant="primary")
with gr.Column(scale=2):
out_task_reg = gr.Textbox(label="Task", interactive=False)
out_btype_reg = gr.Textbox(label="Baseline Type", interactive=False)
out_metrics_reg = gr.JSON(label="Metrics")
out_preds_reg = gr.JSON(label="Sample Predictions")
out_reality_reg = gr.Textbox(label="Reality Check", lines=3, interactive=False)
out_advice_reg = gr.Textbox(label="Advice", lines=3, interactive=False)
# --- Generation/Sequence Tab ---
with gr.TabItem("Generation / Sequence"):
with gr.Row():
with gr.Column(scale=1):
task_seq = gr.Radio(
["chess_moves", "custom"],
label="Task",
value="chess_moves"
)
dataset_size_seq = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
# Custom options
seq_len_seq = gr.Number(label="Sequence Length", value=50, visible=False, minimum=1, step=1)
vocab_seq = gr.Textbox(
label="Comma-separated vocabulary (e.g., a,b,c)",
visible=False,
placeholder="a, b, c, <pad>, <eos>"
)
btn_seq = gr.Button("Get Sequence Baseline", variant="primary")
with gr.Column(scale=2):
out_task_seq = gr.Textbox(label="Task", interactive=False)
out_btype_seq = gr.Textbox(label="Baseline Type", interactive=False)
out_metrics_seq = gr.JSON(label="Metrics")
out_preds_seq = gr.JSON(label="Sample Predictions")
out_reality_seq = gr.Textbox(label="Reality Check", lines=3, interactive=False)
out_advice_seq = gr.Textbox(label="Advice", lines=3, interactive=False)
# --- Roast Tab ---
with gr.TabItem("Roast My Model"):
gr.Markdown("Feeling too good about your model's 98% accuracy on a balanced dataset? Let us fix that.")
btn_roast = gr.Button("Roast Me!", variant="stop")
out_roast = gr.Textbox(label="Your Roast", lines=3, interactive=False)
# --- UI Listeners ---
def update_cls_ui(task):
"""Show/hide custom classification options"""
if task == "custom":
return {
num_classes_cls: gr.update(visible=True, value=10),
classes_cls: gr.update(visible=True),
dist_cls: gr.update(visible=True)
}
elif task == "image_classification (1000 class)":
return {
num_classes_cls: gr.update(visible=False, value=1000),
classes_cls: gr.update(visible=False),
dist_cls: gr.update(visible=False)
}
else: # sentiment
return {
num_classes_cls: gr.update(visible=False),
classes_cls: gr.update(visible=False),
dist_cls: gr.update(visible=False)
}
task_cls.change(
fn=update_cls_ui,
inputs=task_cls,
outputs=[num_classes_cls, classes_cls, dist_cls]
)
def update_seq_ui(task):
"""Show/hide custom sequence options"""
if task == "custom":
return {
seq_len_seq: gr.update(visible=True),
vocab_seq: gr.update(visible=True)
}
else: # chess_moves
return {
seq_len_seq: gr.update(visible=False),
vocab_seq: gr.update(visible=False)
}
task_seq.change(
fn=update_seq_ui,
inputs=task_seq,
outputs=[seq_len_seq, vocab_seq]
)
# Button click handlers
cls_outputs = [out_task_cls, out_btype_cls, out_metrics_cls, out_preds_cls, out_reality_cls, out_advice_cls]
btn_cls.click(
fn=handle_classification,
inputs=[task_cls, dataset_size_cls, num_classes_cls, classes_cls, dist_cls],
outputs=cls_outputs
)
reg_outputs = [out_task_reg, out_btype_reg, out_metrics_reg, out_preds_reg, out_reality_reg, out_advice_reg]
btn_reg.click(
fn=handle_regression,
inputs=[dataset_size_reg],
outputs=reg_outputs
)
seq_outputs = [out_task_seq, out_btype_seq, out_metrics_seq, out_preds_seq, out_reality_seq, out_advice_seq]
btn_seq.click(
fn=handle_sequence,
inputs=[task_seq, dataset_size_seq, seq_len_seq, vocab_seq],
outputs=seq_outputs
)
btn_roast.click(fn=get_roast, inputs=None, outputs=out_roast)
if __name__ == "__main__":
print("Starting Gradio app... Access it at http://127.0.0.1:7860 (or the URL shown below)")
demo.launch()
|