roast-me / app.py
philipp-zettl's picture
Update app.py
864db86 verified
import gradio as gr
from pydantic import BaseModel, field_validator
from typing import List, Optional, Dict, Any
import numpy as np
import random
import json
import spaces
class BaselineRequest(BaseModel):
task: str # "classification", "regression", "generation", "chess_moves"
dataset_size: int
output_format: str # "categorical", "continuous", "sequence"
classes: Optional[List[str]] = None
num_classes: Optional[int] = None
sequence_length: Optional[int] = None
target_distribution: Optional[Dict[str, float]] = None
@field_validator('dataset_size')
def size_must_be_positive(cls, v):
if v <= 0:
raise ValueError('Dataset size must be positive')
return v
class BaselineResponse(BaseModel):
task: str
baseline_type: str
metrics: Dict[str, Any]
sample_predictions: List[Any]
reality_check: str
advice: str
def generate_random_classification(request: BaselineRequest):
"""Generate random classification baseline"""
if request.classes:
num_classes = len(request.classes)
class_names = request.classes
else:
num_classes = request.num_classes or 2
class_names = [f"class_{i}" for i in range(num_classes)]
# Ensure num_classes is not zero
if num_classes == 0:
num_classes = 1
class_names = ["default_class"]
# Generate random predictions
if request.target_distribution:
# Use provided distribution
weights = [request.target_distribution.get(cls, 1/num_classes) for cls in class_names]
try:
predictions = random.choices(class_names, weights=weights, k=request.dataset_size)
except ValueError: # Handle all-zero weights
predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
else:
# Uniform random
predictions = [random.choice(class_names) for _ in range(request.dataset_size)]
# Calculate expected accuracy for uniform random
expected_accuracy = 1 / num_classes
return {
"baseline_type": "uniform_random" if not request.target_distribution else "weighted_random",
"metrics": {
"expected_accuracy": round(expected_accuracy, 4),
"expected_f1": round(expected_accuracy, 4), # Simplified for uniform case
"num_classes": num_classes
},
"sample_predictions": predictions[:10],
"reality_check": f"Random guessing should get ~{expected_accuracy:.1%} accuracy. If your model doesn't beat this by a significant margin, it's probably garbage.",
"advice": "Train a simple baseline (logistic regression, random forest) before going neural. Save yourself the GPU bills."
}
def generate_random_regression(request: BaselineRequest):
"""Generate random regression baseline"""
# Generate random continuous values
predictions = np.random.normal(0, 1, request.dataset_size)
return {
"baseline_type": "gaussian_random",
"metrics": {
"mean": round(float(np.mean(predictions)), 4),
"std": round(float(np.std(predictions)), 4),
"range": [round(float(np.min(predictions)), 4), round(float(np.max(predictions)), 4)]
},
"sample_predictions": predictions[:10].tolist(),
"reality_check": "Random regression predictions have infinite MSE against any reasonable target. If your model's MSE isn't dramatically better, you're wasting compute.",
"advice": "Start with mean prediction baseline, then linear regression. Neural networks are overkill for most regression problems."
}
def generate_random_sequence(request: BaselineRequest):
"""Generate random sequence baseline (like text/chess moves)"""
vocab_size = len(request.classes) if request.classes else 1000
if vocab_size == 0: # Handle empty vocab
vocab_size = 1
seq_len = request.sequence_length or 50
sequences = []
for _ in range(min(10, request.dataset_size)):
if request.classes:
seq = [random.choice(request.classes) for _ in range(seq_len)]
else:
seq = [random.randint(0, vocab_size-1) for _ in range(seq_len)]
sequences.append(seq)
perplexity = vocab_size # Worst case perplexity for uniform random
return {
"baseline_type": "uniform_random_sequence",
"metrics": {
"perplexity": perplexity,
"sequence_length": seq_len,
"vocab_size": vocab_size
},
"sample_predictions": sequences,
"reality_check": f"Random sequences have perplexity ~{perplexity}. If your language model doesn't crush this, it learned nothing.",
"advice": "Even a bigram model should destroy random baselines. If it doesn't, check your data preprocessing."
}
# Special handlers (from original app)
TASK_HANDLERS = {
"chess_moves": lambda req: generate_random_sequence(BaselineRequest(
task="chess_moves",
dataset_size=req.dataset_size,
output_format="sequence",
classes=["e4", "d4", "Nf3", "c4", "g3", "Nc3", "f4", "e3"], # Common opening moves
sequence_length=1
)),
"sentiment": lambda req: generate_random_classification(BaselineRequest(
task="sentiment",
dataset_size=req.dataset_size,
output_format="categorical",
classes=["positive", "negative", "neutral"]
)),
"image_classification": lambda req: generate_random_classification(BaselineRequest(
task="image_classification",
dataset_size=req.dataset_size,
output_format="categorical",
num_classes=req.num_classes or 1000 # ImageNet default
))
}
# Roast logic (from original app)
ROASTS = [
"Your neural network is just an expensive random number generator.",
"I bet your model's accuracy is 50.1% and you're calling it 'promising results'.",
"Random guessing doesn't need 8 GPUs and a PhD to run.",
"Your transformer probably learned to predict the dataset bias, not the actual task.",
"If random baseline beats your model, maybe try a different career?",
"Your model: 47% accuracy. Random baseline: 50%. Congratulations, you made it worse.",
]
def get_roast():
"""Get roasted for probably having a model worse than random"""
return random.choice(ROASTS)
def handle_classification(task_choice, dataset_size, num_classes, classes_str, dist_str):
"""Gradio handler for the classification tab"""
try:
# 1. Parse Inputs
task_name = task_choice
if task_choice == "image_classification (1000 class)":
task_name = "image_classification"
num_classes = 1000 # Override
classes_list = [c.strip() for c in classes_str.split(',')] if classes_str else None
target_dist = None
if dist_str:
try:
target_dist = json.loads(dist_str)
if not isinstance(target_dist, dict):
raise ValueError("JSON must be an object/dictionary.")
except json.JSONDecodeError as e:
raise gr.Error(f"Invalid JSON in target distribution: {e}")
except ValueError as e:
raise gr.Error(str(e))
# 2. Build Request
request = BaselineRequest(
task=task_name,
dataset_size=int(dataset_size),
output_format="categorical",
classes=classes_list,
num_classes=int(num_classes) if num_classes else None,
target_distribution=target_dist
)
# 3. Get Result
if request.task in TASK_HANDLERS:
result = TASK_HANDLERS[request.task](request)
else: # "custom"
result = generate_random_classification(request)
# 4. Format Output
response = BaselineResponse(task=request.task, **result)
return (
response.task,
response.baseline_type,
response.metrics,
response.sample_predictions,
response.reality_check,
response.advice
)
except Exception as e:
raise gr.Error(str(e))
def handle_regression(dataset_size):
"""Gradio handler for the regression tab"""
try:
request = BaselineRequest(
task="regression",
dataset_size=int(dataset_size),
output_format="continuous"
)
result = generate_random_regression(request)
response = BaselineResponse(task=request.task, **result)
return (
response.task,
response.baseline_type,
response.metrics,
response.sample_predictions,
response.reality_check,
response.advice
)
except Exception as e:
raise gr.Error(str(e))
def handle_sequence(task_choice, dataset_size, seq_len, vocab_str):
"""Gradio handler for the generation/sequence tab"""
try:
vocab_list = [c.strip() for c in vocab_str.split(',')] if vocab_str else None
request = BaselineRequest(
task=task_choice,
dataset_size=int(dataset_size),
output_format="sequence",
classes=vocab_list,
sequence_length=int(seq_len) if seq_len else 50
)
if request.task in TASK_HANDLERS:
result = TASK_HANDLERS[request.task](request)
else: # "custom"
result = generate_random_sequence(request)
response = BaselineResponse(task=request.task, **result)
return (
response.task,
response.baseline_type,
response.metrics,
response.sample_predictions,
response.reality_check,
response.advice
)
except Exception as e:
raise gr.Error(str(e))
with gr.Blocks(theme=gr.themes.Soft(), title="Random Baseline API") as demo:
gr.Markdown(
"""
# Random Baseline API
**The most honest ML API in existence. Keeping researchers humble since 2025.**
Get a random baseline for your ML task. Because sometimes you need to know how bad 'bad' really is.
"""
)
with gr.Tabs():
# --- Classification Tab ---
with gr.TabItem("Classification"):
with gr.Row():
with gr.Column(scale=1):
task_cls = gr.Radio(
["sentiment", "image_classification (1000 class)", "custom"],
label="Task",
value="sentiment"
)
dataset_size_cls = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
# Custom options
num_classes_cls = gr.Number(
label="Number of Classes (if classes not specified)",
value=10,
visible=False,
minimum=1,
step=1
)
classes_cls = gr.Textbox(
label="Comma-separated classes (e.g., cat,dog,fish)",
visible=False,
placeholder="cat, dog, fish"
)
dist_cls = gr.Textbox(
label='JSON target distribution (e.g., {"cat": 0.8})',
visible=False,
placeholder='{"cat": 0.8, "dog": 0.1, "fish": 0.1}'
)
btn_cls = gr.Button("Get Classification Baseline", variant="primary")
with gr.Column(scale=2):
out_task_cls = gr.Textbox(label="Task", interactive=False)
out_btype_cls = gr.Textbox(label="Baseline Type", interactive=False)
out_metrics_cls = gr.JSON(label="Metrics")
out_preds_cls = gr.JSON(label="Sample Predictions")
out_reality_cls = gr.Textbox(label="Reality Check", lines=3, interactive=False)
out_advice_cls = gr.Textbox(label="Advice", lines=3, interactive=False)
# --- Regression Tab ---
with gr.TabItem("Regression"):
with gr.Row():
with gr.Column(scale=1):
dataset_size_reg = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
btn_reg = gr.Button("Get Regression Baseline", variant="primary")
with gr.Column(scale=2):
out_task_reg = gr.Textbox(label="Task", interactive=False)
out_btype_reg = gr.Textbox(label="Baseline Type", interactive=False)
out_metrics_reg = gr.JSON(label="Metrics")
out_preds_reg = gr.JSON(label="Sample Predictions")
out_reality_reg = gr.Textbox(label="Reality Check", lines=3, interactive=False)
out_advice_reg = gr.Textbox(label="Advice", lines=3, interactive=False)
# --- Generation/Sequence Tab ---
with gr.TabItem("Generation / Sequence"):
with gr.Row():
with gr.Column(scale=1):
task_seq = gr.Radio(
["chess_moves", "custom"],
label="Task",
value="chess_moves"
)
dataset_size_seq = gr.Number(label="Dataset Size", value=1000, minimum=1, step=1)
# Custom options
seq_len_seq = gr.Number(label="Sequence Length", value=50, visible=False, minimum=1, step=1)
vocab_seq = gr.Textbox(
label="Comma-separated vocabulary (e.g., a,b,c)",
visible=False,
placeholder="a, b, c, <pad>, <eos>"
)
btn_seq = gr.Button("Get Sequence Baseline", variant="primary")
with gr.Column(scale=2):
out_task_seq = gr.Textbox(label="Task", interactive=False)
out_btype_seq = gr.Textbox(label="Baseline Type", interactive=False)
out_metrics_seq = gr.JSON(label="Metrics")
out_preds_seq = gr.JSON(label="Sample Predictions")
out_reality_seq = gr.Textbox(label="Reality Check", lines=3, interactive=False)
out_advice_seq = gr.Textbox(label="Advice", lines=3, interactive=False)
# --- Roast Tab ---
with gr.TabItem("Roast My Model"):
gr.Markdown("Feeling too good about your model's 98% accuracy on a balanced dataset? Let us fix that.")
btn_roast = gr.Button("Roast Me!", variant="stop")
out_roast = gr.Textbox(label="Your Roast", lines=3, interactive=False)
# --- UI Listeners ---
def update_cls_ui(task):
"""Show/hide custom classification options"""
if task == "custom":
return {
num_classes_cls: gr.update(visible=True, value=10),
classes_cls: gr.update(visible=True),
dist_cls: gr.update(visible=True)
}
elif task == "image_classification (1000 class)":
return {
num_classes_cls: gr.update(visible=False, value=1000),
classes_cls: gr.update(visible=False),
dist_cls: gr.update(visible=False)
}
else: # sentiment
return {
num_classes_cls: gr.update(visible=False),
classes_cls: gr.update(visible=False),
dist_cls: gr.update(visible=False)
}
task_cls.change(
fn=update_cls_ui,
inputs=task_cls,
outputs=[num_classes_cls, classes_cls, dist_cls]
)
def update_seq_ui(task):
"""Show/hide custom sequence options"""
if task == "custom":
return {
seq_len_seq: gr.update(visible=True),
vocab_seq: gr.update(visible=True)
}
else: # chess_moves
return {
seq_len_seq: gr.update(visible=False),
vocab_seq: gr.update(visible=False)
}
task_seq.change(
fn=update_seq_ui,
inputs=task_seq,
outputs=[seq_len_seq, vocab_seq]
)
# Button click handlers
cls_outputs = [out_task_cls, out_btype_cls, out_metrics_cls, out_preds_cls, out_reality_cls, out_advice_cls]
btn_cls.click(
fn=handle_classification,
inputs=[task_cls, dataset_size_cls, num_classes_cls, classes_cls, dist_cls],
outputs=cls_outputs
)
reg_outputs = [out_task_reg, out_btype_reg, out_metrics_reg, out_preds_reg, out_reality_reg, out_advice_reg]
btn_reg.click(
fn=handle_regression,
inputs=[dataset_size_reg],
outputs=reg_outputs
)
seq_outputs = [out_task_seq, out_btype_seq, out_metrics_seq, out_preds_seq, out_reality_seq, out_advice_seq]
btn_seq.click(
fn=handle_sequence,
inputs=[task_seq, dataset_size_seq, seq_len_seq, vocab_seq],
outputs=seq_outputs
)
btn_roast.click(fn=get_roast, inputs=None, outputs=out_roast)
if __name__ == "__main__":
print("Starting Gradio app... Access it at http://127.0.0.1:7860 (or the URL shown below)")
demo.launch()