SportsCoaching / README.md
qihfang's picture
Downgrade Gradio to 5.34.0
5a736f2
---
title: AI Sports Coaching
emoji: 🎬
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 5.34.0
app_file: app.py
pinned: false
---
# 🎬 AI Sports Coaching System
A video-based pose estimation and AI analysis platform powered by Vision-Language Models (VLMs). Users can upload videos, perform pose detection, temporal downsampling, and get intelligent feedback.
## Features
- πŸ“Ή **Video Upload**: Support for multiple video formats
- πŸ€– **Pose Estimation**: Human keypoint detection
- ⏱️ **Temporal Downsampling**: Configurable frame rate reduction
- 🧠 **AI Analysis**: Integrate LLMs/VLMs for intelligent insights
- 🐍 **Python Processing**: Custom data processing and analysis pipelines
- πŸ“Š **Result Visualization**: Multi-dimensional result display
- ⭐ **Scoring Mechanism**: User feedback scoring for outputs
## Workflow
1. **Video Upload** β†’ Upload one or more videos for analysis
2. **Pose Estimation** β†’ Extract human keypoint data
3. **Temporal Downsampling** β†’ Reduce frame rate according to settings
4. **AI Analysis** β†’ Use VLM/LLM to analyze pose features
5. **Python Processing** β†’ Run custom analysis scripts
6. **Result Generation** β†’ Produce a comprehensive analysis report
7. **Scoring** β†’ User rates output quality (e.g., 1–5)
## Usage
1. Upload video file(s)
2. Configure downsampling rate (e.g., 1–10)
3. Click β€œStart Processing”
4. View results in different tabs (pose visualization, analysis report, charts, etc.)
5. Provide feedback score for the outputs
## TODO
- **Accelerate Pose Estimation**
- Optimize model inference (e.g., model pruning/quantization, GPU/CPU parallelism)
- Batch processing for multiple videos or frames
- Investigate lightweight architectures or delegate to hardware accelerators
- **Local Deployment of VLMs**
- Documentation for downloading and setting up VLM weights locally
- Instructions for environment configuration (dependencies, hardware requirements)
- Offline inference capabilities and fallback strategies
- Security considerations for storing API keys or model files
- **Support Multiple Video Formats**
- Automatic compatibility check and conversion (e.g., mp4, avi, mov, webm)
- Integrate ffmpeg (or similar) for on-the-fly format handling
- Graceful fallback or user guidance when format is unsupported
- **Extend Scoring & Feedback Loop**
- Store user scores along with video metadata
- Use scores to fine-tune or adjust analysis parameters over time
- **Support Different Language**
- Use different language prompts for different language
- Update prompts for stable language-control
## License
MIT License