firstaid / core /fact_checker.py
rivapereira123's picture
Update core/fact_checker.py
f2f4366 verified
import re
from typing import Dict, Any, List
def clean_ocr_artifacts(text: str) -> str:
text = re.sub(r'\s{2,}', ' ', text)
text = re.sub(r'(?<=[\.\?!]\s)([eEoO])([A-Z][a-z]+)', r'\2', text) # eFlood → Flood, oSeek → Seek
text = re.sub(r'\b[Aa]love\b', 'aloe', text)
text = re.sub(r'\bRelevanci\b', 'Relevance', text)
text = re.sub(r'\bAlove\b', 'Aloe', text)
text = re.sub(r'\b[aA]dvice\b', 'advice', text)
return text.strip()
class MedicalFactChecker:
"""Enhanced medical fact checker with faster validation"""
def __init__(self):
self.medical_facts = self._load_medical_facts()
self.contraindications = self._load_contraindications()
self.dosage_patterns = self._compile_dosage_patterns()
self.definitive_patterns = [
re.compile(r, re.IGNORECASE) for r in [
r'always\s+(?:use|take|apply)',
r'never\s+(?:use|take|apply)',
r'will\s+(?:cure|heal|fix)',
r'guaranteed\s+to',
r'completely\s+(?:safe|effective)'
]
]
def _load_medical_facts(self) -> Dict[str, Any]:
"""Pre-loaded medical facts for Gaza context"""
return {
"burn_treatment": {
"cool_water": "Use clean, cool (not ice-cold) water for 10-20 minutes",
"no_ice": "Never apply ice directly to burns",
"clean_cloth": "Cover with clean, dry cloth if available"
},
"wound_care": {
"pressure": "Apply direct pressure to control bleeding",
"elevation": "Elevate injured limb if possible",
"clean_hands": "Clean hands before treating wounds when possible"
},
"infection_signs": {
"redness": "Increasing redness around wound",
"warmth": "Increased warmth at wound site",
"pus": "Yellow or green discharge",
"fever": "Fever may indicate systemic infection"
}
}
def _load_contraindications(self) -> Dict[str, List[str]]:
"""Pre-loaded contraindications for common treatments"""
return {
"aspirin": ["children under 16", "bleeding disorders", "stomach ulcers"],
"ibuprofen": ["kidney disease", "heart failure", "stomach bleeding"],
"hydrogen_peroxide": ["deep wounds", "closed wounds", "eyes"],
"tourniquets": ["non-life-threatening bleeding", "without proper training"]
}
def _compile_dosage_patterns(self) -> List[re.Pattern]:
"""Pre-compiled dosage patterns"""
patterns = [
r'\d+\s*mg\b', # milligrams
r'\d+\s*g\b', # grams
r'\d+\s*ml\b', # milliliters
r'\d+\s*tablets?\b', # tablets
r'\d+\s*times?\s+(?:per\s+)?day\b', # frequency
r'every\s+\d+\s+hours?\b' # intervals
]
return [re.compile(pattern, re.IGNORECASE) for pattern in patterns]
def check_medical_accuracy(self, response: str, context: str) -> Dict[str, Any]:
"""Enhanced medical accuracy check with Gaza-specific considerations"""
if response is None:
response = ""
issues = []
warnings = []
accuracy_score = 0.0
# Check for contraindications (faster keyword matching)
response_lower = response.lower()
for medication, contra_list in self.contraindications.items():
if medication in response_lower:
for contra in contra_list:
if any(word in response_lower for word in contra.split()):
issues.append(f"Potential contraindication: {medication} with {contra}")
accuracy_score -= 0.3
break
# Context alignment using Jaccard similarity
if context:
resp_words = set(response_lower.split())
ctx_words = set(context.lower().split())
context_similarity = len(resp_words & ctx_words) / len(resp_words | ctx_words) if ctx_words else 0.0
if context_similarity < 0.5: # Lowered threshold for Gaza context
warnings.append(f"Low context similarity: {context_similarity:.2f}")
accuracy_score -= 0.1
else:
context_similarity = 0.0
# Gaza-specific resource checks
gaza_resources = ["clean water", "sterile", "hospital", "ambulance", "electricity"]
if any(resource in response_lower for resource in gaza_resources):
warnings.append("Consider resource limitations in Gaza context")
accuracy_score -= 0.05
# Unsupported claims check
for pattern in self.definitive_patterns:
if pattern.search(response):
issues.append(f"Unsupported definitive claim detected")
accuracy_score -= 0.4
break
# Dosage validation
for pattern in self.dosage_patterns:
if pattern.search(response):
warnings.append("Dosage detected - verify with professional")
accuracy_score -= 0.1
break
confidence_score = max(0.0, min(1.0, 0.8 + accuracy_score))
return {
"confidence_score": confidence_score,
"issues": issues,
"warnings": warnings,
"context_similarity": context_similarity,
"is_safe": len(issues) == 0 and confidence_score > 0.5
}