File size: 7,461 Bytes
fc091ae
 
 
 
 
 
 
 
24a98c3
fc091ae
 
24a98c3
fc091ae
 
 
 
 
 
 
 
 
 
b4d24bd
fc091ae
 
 
 
 
 
 
 
24a98c3
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
24a98c3
fc091ae
 
 
 
 
 
 
 
24a98c3
 
 
 
 
 
 
 
 
 
 
 
 
 
fc091ae
 
24a98c3
fc091ae
 
 
 
 
24a98c3
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d24bd
 
 
24a98c3
 
 
 
 
 
 
 
 
 
 
 
fc091ae
 
 
 
 
 
24a98c3
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
b4d24bd
 
 
fc091ae
 
24a98c3
fc091ae
 
24a98c3
fc091ae
 
24a98c3
fc091ae
24a98c3
fc091ae
 
 
 
 
 
24a98c3
fc091ae
24a98c3
fc091ae
 
24a98c3
fc091ae
 
 
24a98c3
fc091ae
 
24a98c3
fc091ae
24a98c3
 
fc091ae
24a98c3
fc091ae
 
 
24a98c3
fc091ae
 
 
 
24a98c3
fc091ae
 
 
 
 
24a98c3
fc091ae
24a98c3
fc091ae
 
 
24a98c3
fc091ae
 
 
 
 
 
 
24a98c3
fc091ae
24a98c3
fc091ae
 
 
 
 
24a98c3
fc091ae
 
 
24a98c3
fc091ae
 
 
 
24a98c3
fc091ae
 
 
24a98c3
fc091ae
 
24a98c3
fc091ae
 
24a98c3
fc091ae
24a98c3
fc091ae
24a98c3
fc091ae
 
 
24a98c3
fc091ae
 
24a98c3
fc091ae
24a98c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
"""
LightRAG Rerank Integration Example

This example demonstrates how to use rerank functionality with LightRAG
to improve retrieval quality across different query modes.

Configuration Required:
1. Set your LLM API key and base URL in llm_model_func()
2. Set your embedding API key and base URL in embedding_func()
3. Set your rerank API key and base URL in the rerank configuration
4. Or use environment variables (.env file):
   - ENABLE_RERANK=True
"""

import asyncio
import os
import numpy as np

from lightrag import LightRAG, QueryParam
from lightrag.rerank import custom_rerank, RerankModel
from lightrag.llm.openai import openai_complete_if_cache, openai_embed
from lightrag.utils import EmbeddingFunc, setup_logger
from lightrag.kg.shared_storage import initialize_pipeline_status

# Set up your working directory
WORKING_DIR = "./test_rerank"
setup_logger("test_rerank")

if not os.path.exists(WORKING_DIR):
    os.mkdir(WORKING_DIR)


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], **kwargs
) -> str:
    return await openai_complete_if_cache(
        "gpt-4o-mini",
        prompt,
        system_prompt=system_prompt,
        history_messages=history_messages,
        api_key="your_llm_api_key_here",
        base_url="https://api.your-llm-provider.com/v1",
        **kwargs,
    )


async def embedding_func(texts: list[str]) -> np.ndarray:
    return await openai_embed(
        texts,
        model="text-embedding-3-large",
        api_key="your_embedding_api_key_here",
        base_url="https://api.your-embedding-provider.com/v1",
    )


async def my_rerank_func(query: str, documents: list, top_k: int = None, **kwargs):
    """Custom rerank function with all settings included"""
    return await custom_rerank(
        query=query,
        documents=documents,
        model="BAAI/bge-reranker-v2-m3",
        base_url="https://api.your-rerank-provider.com/v1/rerank",
        api_key="your_rerank_api_key_here",
        top_k=top_k or 10,  # Default top_k if not provided
        **kwargs,
    )


async def create_rag_with_rerank():
    """Create LightRAG instance with rerank configuration"""

    # Get embedding dimension
    test_embedding = await embedding_func(["test"])
    embedding_dim = test_embedding.shape[1]
    print(f"Detected embedding dimension: {embedding_dim}")

    # Method 1: Using custom rerank function
    rag = LightRAG(
        working_dir=WORKING_DIR,
        llm_model_func=llm_model_func,
        embedding_func=EmbeddingFunc(
            embedding_dim=embedding_dim,
            max_token_size=8192,
            func=embedding_func,
        ),
        # Simplified Rerank Configuration
        enable_rerank=True,
        rerank_model_func=my_rerank_func,
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag


async def create_rag_with_rerank_model():
    """Alternative: Create LightRAG instance using RerankModel wrapper"""

    # Get embedding dimension
    test_embedding = await embedding_func(["test"])
    embedding_dim = test_embedding.shape[1]
    print(f"Detected embedding dimension: {embedding_dim}")

    # Method 2: Using RerankModel wrapper
    rerank_model = RerankModel(
        rerank_func=custom_rerank,
        kwargs={
            "model": "BAAI/bge-reranker-v2-m3",
            "base_url": "https://api.your-rerank-provider.com/v1/rerank",
            "api_key": "your_rerank_api_key_here",
        },
    )

    rag = LightRAG(
        working_dir=WORKING_DIR,
        llm_model_func=llm_model_func,
        embedding_func=EmbeddingFunc(
            embedding_dim=embedding_dim,
            max_token_size=8192,
            func=embedding_func,
        ),
        enable_rerank=True,
        rerank_model_func=rerank_model.rerank,
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    return rag


async def test_rerank_with_different_topk():
    """
    Test rerank functionality with different top_k settings
    """
    print("πŸš€ Setting up LightRAG with Rerank functionality...")

    rag = await create_rag_with_rerank()

    # Insert sample documents
    sample_docs = [
        "Reranking improves retrieval quality by re-ordering documents based on relevance.",
        "LightRAG is a powerful retrieval-augmented generation system with multiple query modes.",
        "Vector databases enable efficient similarity search in high-dimensional embedding spaces.",
        "Natural language processing has evolved with large language models and transformers.",
        "Machine learning algorithms can learn patterns from data without explicit programming.",
    ]

    print("πŸ“„ Inserting sample documents...")
    await rag.ainsert(sample_docs)

    query = "How does reranking improve retrieval quality?"
    print(f"\nπŸ” Testing query: '{query}'")
    print("=" * 80)

    # Test different top_k values to show parameter priority
    top_k_values = [2, 5, 10]

    for top_k in top_k_values:
        print(f"\nπŸ“Š Testing with QueryParam(top_k={top_k}):")

        # Test naive mode with specific top_k
        result = await rag.aquery(query, param=QueryParam(mode="naive", top_k=top_k))
        print(f"   Result length: {len(result)} characters")
        print(f"   Preview: {result[:100]}...")


async def test_direct_rerank():
    """Test rerank function directly"""
    print("\nπŸ”§ Direct Rerank API Test")
    print("=" * 40)

    documents = [
        {"content": "Reranking significantly improves retrieval quality"},
        {"content": "LightRAG supports advanced reranking capabilities"},
        {"content": "Vector search finds semantically similar documents"},
        {"content": "Natural language processing with modern transformers"},
        {"content": "The quick brown fox jumps over the lazy dog"},
    ]

    query = "rerank improve quality"
    print(f"Query: '{query}'")
    print(f"Documents: {len(documents)}")

    try:
        reranked_docs = await custom_rerank(
            query=query,
            documents=documents,
            model="BAAI/bge-reranker-v2-m3",
            base_url="https://api.your-rerank-provider.com/v1/rerank",
            api_key="your_rerank_api_key_here",
            top_k=3,
        )

        print("\nβœ… Rerank Results:")
        for i, doc in enumerate(reranked_docs):
            score = doc.get("rerank_score", "N/A")
            content = doc.get("content", "")[:60]
            print(f"  {i+1}. Score: {score:.4f} | {content}...")

    except Exception as e:
        print(f"❌ Rerank failed: {e}")


async def main():
    """Main example function"""
    print("🎯 LightRAG Rerank Integration Example")
    print("=" * 60)

    try:
        # Test rerank with different top_k values
        await test_rerank_with_different_topk()

        # Test direct rerank
        await test_direct_rerank()

        print("\nβœ… Example completed successfully!")
        print("\nπŸ’‘ Key Points:")
        print("   βœ“ All rerank configurations are contained within rerank_model_func")
        print("   βœ“ Rerank improves document relevance ordering")
        print("   βœ“ Configure API keys within your rerank function")
        print("   βœ“ Monitor API usage and costs when using rerank services")

    except Exception as e:
        print(f"\n❌ Example failed: {e}")
        import traceback

        traceback.print_exc()


if __name__ == "__main__":
    asyncio.run(main())