File size: 58,433 Bytes
9c6d163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "4b5690db12e34685",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:40:58.307102Z",
     "start_time": "2025-01-09T03:40:51.935233Z"
    }
   },
   "outputs": [],
   "source": [
    "import os\n",
    "import logging\n",
    "import numpy as np\n",
    "from lightrag import LightRAG, QueryParam\n",
    "from lightrag.llm import openai_complete_if_cache, openai_embedding\n",
    "from lightrag.utils import EmbeddingFunc\n",
    "import nest_asyncio"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dd17956ec322b361",
   "metadata": {},
   "source": "#### split by character"
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8c8ee7c061bf9159",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:41:13.961167Z",
     "start_time": "2025-01-09T03:41:13.958357Z"
    }
   },
   "outputs": [],
   "source": [
    "nest_asyncio.apply()\n",
    "WORKING_DIR = \"../../llm_rag/paper_db/R000088_test1\"\n",
    "logging.basicConfig(format=\"%(levelname)s:%(message)s\", level=logging.INFO)\n",
    "if not os.path.exists(WORKING_DIR):\n",
    "    os.mkdir(WORKING_DIR)\n",
    "API = os.environ.get(\"DOUBAO_API_KEY\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a5009d16e0851dca",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:41:16.862036Z",
     "start_time": "2025-01-09T03:41:16.859306Z"
    }
   },
   "outputs": [],
   "source": [
    "async def llm_model_func(\n",
    "    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs\n",
    ") -> str:\n",
    "    return await openai_complete_if_cache(\n",
    "        \"ep-20241218114828-2tlww\",\n",
    "        prompt,\n",
    "        system_prompt=system_prompt,\n",
    "        history_messages=history_messages,\n",
    "        api_key=API,\n",
    "        base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
    "        **kwargs,\n",
    "    )\n",
    "\n",
    "\n",
    "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
    "    return await openai_embedding(\n",
    "        texts,\n",
    "        model=\"ep-20241231173413-pgjmk\",\n",
    "        api_key=API,\n",
    "        base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
    "    )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "397fcad24ce4d0ed",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:41:24.950307Z",
     "start_time": "2025-01-09T03:41:24.940353Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:lightrag:Logger initialized for working directory: ../../llm_rag/paper_db/R000088_test1\n",
      "INFO:lightrag:Load KV llm_response_cache with 0 data\n",
      "INFO:lightrag:Load KV full_docs with 0 data\n",
      "INFO:lightrag:Load KV text_chunks with 0 data\n",
      "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_entities.json'} 0 data\n",
      "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_relationships.json'} 0 data\n",
      "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test1/vdb_chunks.json'} 0 data\n",
      "INFO:lightrag:Loaded document status storage with 0 records\n"
     ]
    }
   ],
   "source": [
    "rag = LightRAG(\n",
    "    working_dir=WORKING_DIR,\n",
    "    llm_model_func=llm_model_func,\n",
    "    embedding_func=EmbeddingFunc(\n",
    "        embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
    "    ),\n",
    "    chunk_token_size=512,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "1dc3603677f7484d",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:41:37.947456Z",
     "start_time": "2025-01-09T03:41:37.941901Z"
    }
   },
   "outputs": [],
   "source": [
    "with open(\n",
    "    \"../../llm_rag/example/R000088/auto/R000088_full_txt.md\", \"r\", encoding=\"utf-8\"\n",
    ") as f:\n",
    "    content = f.read()\n",
    "\n",
    "\n",
    "async def embedding_func(texts: list[str]) -> np.ndarray:\n",
    "    return await openai_embedding(\n",
    "        texts,\n",
    "        model=\"ep-20241231173413-pgjmk\",\n",
    "        api_key=API,\n",
    "        base_url=\"https://ark.cn-beijing.volces.com/api/v3\",\n",
    "    )\n",
    "\n",
    "\n",
    "async def get_embedding_dim():\n",
    "    test_text = [\"This is a test sentence.\"]\n",
    "    embedding = await embedding_func(test_text)\n",
    "    embedding_dim = embedding.shape[1]\n",
    "    return embedding_dim"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "6844202606acfbe5",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:41:39.608541Z",
     "start_time": "2025-01-09T03:41:39.165057Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n"
     ]
    }
   ],
   "source": [
    "embedding_dimension = await get_embedding_dim()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d6273839d9681403",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:44:34.295345Z",
     "start_time": "2025-01-09T03:41:48.324171Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:lightrag:Processing 1 new unique documents\n",
      "Processing batch 1:   0%|          | 0/1 [00:00<?, ?it/s]INFO:lightrag:Inserting 35 vectors to chunks\n",
      "\n",
      "Generating embeddings:   0%|          | 0/2 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  50%|█████     | 1/2 [00:00<00:00,  1.36batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings: 100%|██████████| 2/2 [00:04<00:00,  2.25s/batch]\u001b[A\n",
      "\n",
      "Extracting entities from chunks:   0%|          | 0/35 [00:00<?, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠙ Processed 1 chunks, 1 entities(duplicated), 0 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:   3%|▎         | 1/35 [00:04<02:47,  4.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠹ Processed 2 chunks, 2 entities(duplicated), 0 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:   6%|▌         | 2/35 [00:05<01:18,  2.37s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠸ Processed 3 chunks, 9 entities(duplicated), 5 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:   9%|▊         | 3/35 [00:26<05:43, 10.73s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠼ Processed 4 chunks, 16 entities(duplicated), 11 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  11%|█▏        | 4/35 [00:26<03:24,  6.60s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠴ Processed 5 chunks, 24 entities(duplicated), 18 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  14%|█▍        | 5/35 [00:33<03:24,  6.82s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠦ Processed 6 chunks, 35 entities(duplicated), 28 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  17%|█▋        | 6/35 [00:42<03:38,  7.53s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠧ Processed 7 chunks, 47 entities(duplicated), 36 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  20%|██        | 7/35 [00:43<02:28,  5.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠇ Processed 8 chunks, 61 entities(duplicated), 49 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  23%|██▎       | 8/35 [00:45<01:52,  4.16s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠏ Processed 9 chunks, 81 entities(duplicated), 49 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠋ Processed 10 chunks, 90 entities(duplicated), 62 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  29%|██▊       | 10/35 [00:46<01:06,  2.64s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠙ Processed 11 chunks, 101 entities(duplicated), 80 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  31%|███▏      | 11/35 [00:52<01:19,  3.31s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠹ Processed 12 chunks, 108 entities(duplicated), 85 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  34%|███▍      | 12/35 [00:54<01:11,  3.12s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠸ Processed 13 chunks, 120 entities(duplicated), 100 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  37%|███▋      | 13/35 [00:59<01:18,  3.55s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠼ Processed 14 chunks, 131 entities(duplicated), 110 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  40%|████      | 14/35 [01:00<00:59,  2.82s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠴ Processed 15 chunks, 143 entities(duplicated), 110 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  43%|████▎     | 15/35 [01:02<00:52,  2.64s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠦ Processed 16 chunks, 162 entities(duplicated), 124 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  46%|████▌     | 16/35 [01:05<00:53,  2.80s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠧ Processed 17 chunks, 174 entities(duplicated), 132 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  49%|████▊     | 17/35 [01:06<00:39,  2.19s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠇ Processed 18 chunks, 185 entities(duplicated), 137 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  51%|█████▏    | 18/35 [01:12<00:53,  3.15s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠏ Processed 19 chunks, 193 entities(duplicated), 149 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  54%|█████▍    | 19/35 [01:18<01:06,  4.14s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠋ Processed 20 chunks, 205 entities(duplicated), 158 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  57%|█████▋    | 20/35 [01:19<00:50,  3.35s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠙ Processed 21 chunks, 220 entities(duplicated), 187 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  60%|██████    | 21/35 [01:27<01:02,  4.47s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠹ Processed 22 chunks, 247 entities(duplicated), 216 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  63%|██████▎   | 22/35 [01:30<00:54,  4.16s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠸ Processed 23 chunks, 260 entities(duplicated), 230 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  66%|██████▌   | 23/35 [01:34<00:48,  4.05s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠼ Processed 24 chunks, 291 entities(duplicated), 253 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  69%|██████▊   | 24/35 [01:38<00:44,  4.03s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠴ Processed 25 chunks, 304 entities(duplicated), 262 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  71%|███████▏  | 25/35 [01:41<00:36,  3.67s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠦ Processed 26 chunks, 313 entities(duplicated), 271 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  74%|███████▍  | 26/35 [01:41<00:24,  2.76s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠧ Processed 27 chunks, 321 entities(duplicated), 283 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  77%|███████▋  | 27/35 [01:47<00:28,  3.52s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠇ Processed 28 chunks, 333 entities(duplicated), 290 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  80%|████████  | 28/35 [01:52<00:28,  4.08s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠏ Processed 29 chunks, 348 entities(duplicated), 307 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  83%|████████▎ | 29/35 [01:59<00:29,  4.88s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠋ Processed 30 chunks, 362 entities(duplicated), 329 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  86%|████████▌ | 30/35 [02:02<00:21,  4.29s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠙ Processed 31 chunks, 373 entities(duplicated), 337 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  89%|████████▊ | 31/35 [02:03<00:13,  3.28s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠹ Processed 32 chunks, 390 entities(duplicated), 369 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  91%|█████████▏| 32/35 [02:03<00:07,  2.55s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠸ Processed 33 chunks, 405 entities(duplicated), 378 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  94%|█████████▍| 33/35 [02:07<00:05,  2.84s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠼ Processed 34 chunks, 435 entities(duplicated), 395 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  97%|█████████▋| 34/35 [02:10<00:02,  2.94s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠴ Processed 35 chunks, 456 entities(duplicated), 440 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks: 100%|██████████| 35/35 [02:23<00:00,  4.10s/chunk]\u001b[A\n",
      "INFO:lightrag:Inserting entities into storage...\n",
      "\n",
      "Inserting entities: 100%|██████████| 324/324 [00:00<00:00, 17456.96entity/s]\n",
      "INFO:lightrag:Inserting relationships into storage...\n",
      "\n",
      "Inserting relationships: 100%|██████████| 427/427 [00:00<00:00, 29956.31relationship/s]\n",
      "INFO:lightrag:Inserting 324 vectors to entities\n",
      "\n",
      "Generating embeddings:   0%|          | 0/11 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:   9%|▉         | 1/11 [00:00<00:06,  1.48batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  18%|█▊        | 2/11 [00:02<00:11,  1.25s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  27%|██▋       | 3/11 [00:02<00:06,  1.17batch/s]\u001b[A\n",
      "Generating embeddings:  36%|███▋      | 4/11 [00:03<00:04,  1.50batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  45%|████▌     | 5/11 [00:03<00:03,  1.78batch/s]\u001b[A\n",
      "Generating embeddings:  55%|█████▍    | 6/11 [00:03<00:02,  2.01batch/s]\u001b[A\n",
      "Generating embeddings:  64%|██████▎   | 7/11 [00:04<00:01,  2.19batch/s]\u001b[A\n",
      "Generating embeddings:  73%|███████▎  | 8/11 [00:04<00:01,  2.31batch/s]\u001b[A\n",
      "Generating embeddings:  82%|████████▏ | 9/11 [00:04<00:00,  2.41batch/s]\u001b[A\n",
      "Generating embeddings:  91%|█████████ | 10/11 [00:05<00:00,  2.48batch/s]\u001b[A\n",
      "Generating embeddings: 100%|██████████| 11/11 [00:05<00:00,  1.91batch/s]\u001b[A\n",
      "INFO:lightrag:Inserting 427 vectors to relationships\n",
      "\n",
      "Generating embeddings:   0%|          | 0/14 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:   7%|▋         | 1/14 [00:01<00:14,  1.11s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  14%|█▍        | 2/14 [00:02<00:14,  1.18s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  21%|██▏       | 3/14 [00:02<00:08,  1.23batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  29%|██▊       | 4/14 [00:03<00:06,  1.56batch/s]\u001b[A\n",
      "Generating embeddings:  36%|███▌      | 5/14 [00:03<00:04,  1.85batch/s]\u001b[A\n",
      "Generating embeddings:  43%|████▎     | 6/14 [00:03<00:03,  2.05batch/s]\u001b[A\n",
      "Generating embeddings:  50%|█████     | 7/14 [00:04<00:03,  2.23batch/s]\u001b[A\n",
      "Generating embeddings:  57%|█████▋    | 8/14 [00:04<00:02,  2.37batch/s]\u001b[A\n",
      "Generating embeddings:  64%|██████▍   | 9/14 [00:04<00:02,  2.46batch/s]\u001b[A\n",
      "Generating embeddings:  71%|███████▏  | 10/14 [00:05<00:01,  2.54batch/s]\u001b[A\n",
      "Generating embeddings:  79%|███████▊  | 11/14 [00:05<00:01,  2.59batch/s]\u001b[A\n",
      "Generating embeddings:  86%|████████▌ | 12/14 [00:06<00:00,  2.64batch/s]\u001b[A\n",
      "Generating embeddings:  93%|█████████▎| 13/14 [00:06<00:00,  2.65batch/s]\u001b[A\n",
      "Generating embeddings: 100%|██████████| 14/14 [00:06<00:00,  2.05batch/s]\u001b[A\n",
      "INFO:lightrag:Writing graph with 333 nodes, 427 edges\n",
      "Processing batch 1: 100%|██████████| 1/1 [02:45<00:00, 165.90s/it]\n"
     ]
    }
   ],
   "source": [
    "# rag.insert(content)\n",
    "rag.insert(content, split_by_character=\"\\n#\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "c4f9ae517151a01d",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:45:11.668987Z",
     "start_time": "2025-01-09T03:45:11.664744Z"
    }
   },
   "outputs": [],
   "source": [
    "prompt1 = \"\"\"你是一名经验丰富的论文分析科学家,你的任务是对一篇英文学术研究论文进行关键信息提取并深入分析。\n",
    "请按照以下步骤进行分析:\n",
    "1. 该文献主要研究的问题是什么?\n",
    "2. 该文献采用什么方法进行分析?\n",
    "3. 该文献的主要结论是什么?\n",
    "首先在<分析>标签中,针对每个问题详细分析你的思考过程。然后在<回答>标签中给出所有问题的最终答案。\"\"\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "id": "7a6491385b050095",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:45:40.829111Z",
     "start_time": "2025-01-09T03:45:13.530298Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:lightrag:Local query uses 5 entites, 12 relations, 3 text units\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:lightrag:Global query uses 8 entites, 5 relations, 4 text units\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<分析>\n",
      "1. **该文献主要研究的问题是什么?**\n",
      "    - 思考过程:通过浏览论文内容,查找作者明确阐述研究目的的部分。文中多处提及“Our study was performed to explore whether folic acid treatment was associated with cancer outcomes and all-cause mortality after extended follow-up”,表明作者旨在探究叶酸治疗与癌症结局及全因死亡率之间的关系,尤其是在经过长期随访后。\n",
      "2. **该文献采用什么方法进行分析?**\n",
      "    - 思考过程:寻找描述研究方法和数据分析过程的段落。文中提到“Survival curves were constructed using the Kaplan-Meier method and differences in survival between groups were analyzed using the log-rank test. Estimates of hazard ratios (HRs) with 95% CIs were obtained by using Cox proportional hazards regression models stratified by trial”,可以看出作者使用了Kaplan-Meier法构建生存曲线、log-rank检验分析组间生存差异以及Cox比例风险回归模型估计风险比等方法。\n",
      "3. **该文献的主要结论是什么?**\n",
      "    - 思考过程:定位到论文中总结结论的部分,如“Conclusion Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods”,可知作者得出叶酸加维生素$\\mathsf{B}_{12}$治疗与癌症结局和全因死亡率增加有关的结论。\n",
      "<回答>\n",
      "1. 该文献主要研究的问题是:叶酸治疗与癌症结局及全因死亡率之间的关系,尤其是在经过长期随访后,叶酸治疗是否与癌症结局和全因死亡率相关。\n",
      "2. 该文献采用的分析方法包括:使用Kaplan-Meier法构建生存曲线、log-rank检验分析组间生存差异、Cox比例风险回归模型估计风险比等。\n",
      "3. 该文献的主要结论是:在挪威没有叶酸强化食品的情况下,叶酸加维生素$\\mathsf{B}_{12}$治疗与缺血性心脏病患者的癌症结局和全因死亡率增加有关。\n",
      "\n",
      "**参考文献**\n",
      "- [VD] In2Norwegianhomocysteine-lowering trialsamongpatientswithischemicheart disease, there was a statistically nonsignificantincreaseincancerincidenceinthe groupsassignedtofolicacidtreatment.15,16 Our study was performed to explore whetherfolicacidtreatmentwasassociatedwithcanceroutcomesandall-cause mortality after extended follow-up.\n",
      "- [VD] Survivalcurveswereconstructedusing theKaplan-Meiermethodanddifferences insurvivalbetweengroupswereanalyzed usingthelog-ranktest.Estimatesofhazard ratios (HRs) with $95\\%$ CIs were obtainedbyusingCoxproportionalhazards regressionmodelsstratifiedbytrial.\n",
      "- [VD] Conclusion Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods.\n"
     ]
    }
   ],
   "source": [
    "resp = rag.query(prompt1, param=QueryParam(mode=\"mix\", top_k=5))\n",
    "print(resp)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e5bfad24cb721a8",
   "metadata": {},
   "source": "#### split by character only"
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "44e2992dc95f8ce0",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:47:40.988796Z",
     "start_time": "2025-01-09T03:47:40.982648Z"
    }
   },
   "outputs": [],
   "source": [
    "WORKING_DIR = \"../../llm_rag/paper_db/R000088_test2\"\n",
    "if not os.path.exists(WORKING_DIR):\n",
    "    os.mkdir(WORKING_DIR)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "id": "62c63385d2d973d5",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:51:39.951329Z",
     "start_time": "2025-01-09T03:49:15.218976Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:lightrag:Logger initialized for working directory: ../../llm_rag/paper_db/R000088_test2\n",
      "INFO:lightrag:Load KV llm_response_cache with 0 data\n",
      "INFO:lightrag:Load KV full_docs with 0 data\n",
      "INFO:lightrag:Load KV text_chunks with 0 data\n",
      "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_entities.json'} 0 data\n",
      "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_relationships.json'} 0 data\n",
      "INFO:nano-vectordb:Init {'embedding_dim': 4096, 'metric': 'cosine', 'storage_file': '../../llm_rag/paper_db/R000088_test2/vdb_chunks.json'} 0 data\n",
      "INFO:lightrag:Loaded document status storage with 0 records\n",
      "INFO:lightrag:Processing 1 new unique documents\n",
      "Processing batch 1:   0%|          | 0/1 [00:00<?, ?it/s]INFO:lightrag:Inserting 12 vectors to chunks\n",
      "\n",
      "Generating embeddings:   0%|          | 0/1 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings: 100%|██████████| 1/1 [00:02<00:00,  2.95s/batch]\u001b[A\n",
      "\n",
      "Extracting entities from chunks:   0%|          | 0/12 [00:00<?, ?chunk/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠙ Processed 1 chunks, 0 entities(duplicated), 0 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:   8%|▊         | 1/12 [00:03<00:43,  3.93s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠹ Processed 2 chunks, 8 entities(duplicated), 8 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  17%|█▋        | 2/12 [00:29<02:44, 16.46s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠸ Processed 3 chunks, 17 entities(duplicated), 15 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  25%|██▌       | 3/12 [00:30<01:25,  9.45s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠼ Processed 4 chunks, 27 entities(duplicated), 22 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  33%|███▎      | 4/12 [00:39<01:16,  9.52s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠴ Processed 5 chunks, 36 entities(duplicated), 33 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  42%|████▏     | 5/12 [00:40<00:43,  6.24s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠦ Processed 6 chunks, 49 entities(duplicated), 42 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  50%|█████     | 6/12 [00:49<00:43,  7.33s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠧ Processed 7 chunks, 62 entities(duplicated), 65 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  58%|█████▊    | 7/12 [01:05<00:50, 10.05s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠇ Processed 8 chunks, 81 entities(duplicated), 90 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  67%|██████▋   | 8/12 [01:23<00:50, 12.69s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠏ Processed 9 chunks, 99 entities(duplicated), 117 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  75%|███████▌  | 9/12 [01:32<00:34, 11.54s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠋ Processed 10 chunks, 123 entities(duplicated), 140 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  83%|████████▎ | 10/12 [01:48<00:25, 12.79s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠙ Processed 11 chunks, 158 entities(duplicated), 174 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks:  92%|█████████▏| 11/12 [02:03<00:13, 13.50s/chunk]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "⠹ Processed 12 chunks, 194 entities(duplicated), 221 relations(duplicated)\r"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n",
      "Extracting entities from chunks: 100%|██████████| 12/12 [02:13<00:00, 11.15s/chunk]\u001b[A\n",
      "INFO:lightrag:Inserting entities into storage...\n",
      "\n",
      "Inserting entities: 100%|██████████| 170/170 [00:00<00:00, 11610.25entity/s]\n",
      "INFO:lightrag:Inserting relationships into storage...\n",
      "\n",
      "Inserting relationships: 100%|██████████| 218/218 [00:00<00:00, 15913.51relationship/s]\n",
      "INFO:lightrag:Inserting 170 vectors to entities\n",
      "\n",
      "Generating embeddings:   0%|          | 0/6 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  17%|█▋        | 1/6 [00:01<00:05,  1.10s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  33%|███▎      | 2/6 [00:02<00:04,  1.07s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  50%|█████     | 3/6 [00:02<00:02,  1.33batch/s]\u001b[A\n",
      "Generating embeddings:  67%|██████▋   | 4/6 [00:02<00:01,  1.67batch/s]\u001b[A\n",
      "Generating embeddings:  83%|████████▎ | 5/6 [00:03<00:00,  1.95batch/s]\u001b[A\n",
      "Generating embeddings: 100%|██████████| 6/6 [00:03<00:00,  1.66batch/s]\u001b[A\n",
      "INFO:lightrag:Inserting 218 vectors to relationships\n",
      "\n",
      "Generating embeddings:   0%|          | 0/7 [00:00<?, ?batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  14%|█▍        | 1/7 [00:01<00:10,  1.74s/batch]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  29%|██▊       | 2/7 [00:02<00:05,  1.04s/batch]\u001b[A\n",
      "Generating embeddings:  43%|████▎     | 3/7 [00:02<00:02,  1.35batch/s]\u001b[A\n",
      "Generating embeddings:  57%|█████▋    | 4/7 [00:03<00:01,  1.69batch/s]\u001b[AINFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "\n",
      "Generating embeddings:  71%|███████▏  | 5/7 [00:03<00:01,  1.96batch/s]\u001b[A\n",
      "Generating embeddings:  86%|████████▌ | 6/7 [00:03<00:00,  2.17batch/s]\u001b[A\n",
      "Generating embeddings: 100%|██████████| 7/7 [00:04<00:00,  1.68batch/s]\u001b[A\n",
      "INFO:lightrag:Writing graph with 174 nodes, 218 edges\n",
      "Processing batch 1: 100%|██████████| 1/1 [02:24<00:00, 144.69s/it]\n"
     ]
    }
   ],
   "source": [
    "rag = LightRAG(\n",
    "    working_dir=WORKING_DIR,\n",
    "    llm_model_func=llm_model_func,\n",
    "    embedding_func=EmbeddingFunc(\n",
    "        embedding_dim=4096, max_token_size=8192, func=embedding_func\n",
    "    ),\n",
    "    chunk_token_size=512,\n",
    ")\n",
    "\n",
    "# rag.insert(content)\n",
    "rag.insert(content, split_by_character=\"\\n#\", split_by_character_only=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "id": "3c7aa9836d8d43c7",
   "metadata": {
    "ExecuteTime": {
     "end_time": "2025-01-09T03:52:37.000418Z",
     "start_time": "2025-01-09T03:52:09.933584Z"
    }
   },
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:lightrag:Local query uses 5 entites, 3 relations, 2 text units\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/embeddings \"HTTP/1.1 200 OK\"\n",
      "INFO:lightrag:Global query uses 9 entites, 5 relations, 4 text units\n",
      "INFO:httpx:HTTP Request: POST https://ark.cn-beijing.volces.com/api/v3/chat/completions \"HTTP/1.1 200 OK\"\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<分析>\n",
      "- **该文献主要研究的问题是什么?**\n",
      "    - **思考过程**:通过浏览论文的标题、摘要、引言等部分,寻找关于研究目的和问题的描述。论文标题为“Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12”,摘要中的“Objective”部分明确指出研究目的是“To evaluate effects of treatment with B vitamins on cancer outcomes and all-cause mortality in 2 randomized controlled trials”。因此,可以确定该文献主要研究的问题是评估B族维生素治疗对两项随机对照试验中癌症结局和全因死亡率的影响。\n",
      "- **该文献采用什么方法进行分析?**\n",
      "    - **思考过程**:在论文的“METHODS”部分详细描述了研究方法。文中提到这是一个对两项随机、双盲、安慰剂对照临床试验(Norwegian Vitamin [NORVIT] trial和Western Norway B Vitamin Intervention Trial [WENBIT])数据的联合分析,并进行了观察性的试验后随访。具体包括对参与者进行分组干预(不同剂量的叶酸、维生素B12、维生素B6或安慰剂),收集临床信息和血样,分析循环B族维生素、同型半胱氨酸和可替宁等指标,并进行基因分型等,还涉及到多种统计分析方法,如计算预期癌症发生率、构建生存曲线、进行Cox比例风险回归模型分析等。\n",
      "- **该文献的主要结论是什么?**\n",
      "    - **思考过程**:在论文的“Results”和“Conclusion”部分寻找主要结论。研究结果表明,在治疗期间,接受叶酸加维生素B12治疗的参与者血清叶酸浓度显著增加,且在后续随访中,该组癌症发病率、癌症死亡率和全因死亡率均有所上升,主要是肺癌发病率增加,而维生素B6治疗未显示出显著影响。结论部分明确指出“Treatment with folic acid plus vitamin $\\mathsf{B}_{12}$ was associated with increased cancer outcomes and all-cause mortality in patients with ischemic heart disease in Norway, where there is no folic acid fortification of foods”。\n",
      "</分析>\n",
      "\n",
      "<回答>\n",
      "- **主要研究问题**:评估B族维生素治疗对两项随机对照试验中癌症结局和全因死亡率的影响。\n",
      "- **研究方法**:采用对两项随机、双盲、安慰剂对照临床试验(Norwegian Vitamin [NORVIT] trial和Western Norway B Vitamin Intervention Trial [WENBIT])数据的联合分析,并进行观察性的试验后随访,涉及分组干预、多种指标检测以及多种统计分析方法。\n",
      "- **主要结论**:在挪威(食品中未添加叶酸),对于缺血性心脏病患者,叶酸加维生素B12治疗与癌症结局和全因死亡率的增加有关,而维生素B6治疗未显示出显著影响。\n",
      "\n",
      "**参考文献**\n",
      "- [VD] Cancer Incidence and Mortality After Treatment With Folic Acid and Vitamin B12\n",
      "- [VD] METHODS Study Design, Participants, and Study Intervention\n",
      "- [VD] RESULTS\n",
      "- [VD] Conclusion\n",
      "- [VD] Objective To evaluate effects of treatment with B vitamins on cancer outcomes and all-cause mortality in 2 randomized controlled trials.\n"
     ]
    }
   ],
   "source": [
    "resp = rag.query(prompt1, param=QueryParam(mode=\"mix\", top_k=5))\n",
    "print(resp)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ba6fa79a2550d10",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}