File size: 3,395 Bytes
a5e91aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f44683
a5e91aa
 
 
 
3f44683
a5e91aa
 
 
 
3f44683
a5e91aa
3f44683
a5e91aa
 
3f44683
a5e91aa
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import os
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.utils import EmbeddingFunc
import numpy as np
from dotenv import load_dotenv
import logging
from openai import AzureOpenAI

logging.basicConfig(level=logging.INFO)

load_dotenv()

AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION")
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT")
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY")
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT")

AZURE_EMBEDDING_DEPLOYMENT = os.getenv("AZURE_EMBEDDING_DEPLOYMENT")
AZURE_EMBEDDING_API_VERSION = os.getenv("AZURE_EMBEDDING_API_VERSION")

WORKING_DIR = "./dickens"

if os.path.exists(WORKING_DIR):
    import shutil

    shutil.rmtree(WORKING_DIR)

os.mkdir(WORKING_DIR)


async def llm_model_func(
    prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs
) -> str:
    client = AzureOpenAI(
        api_key=AZURE_OPENAI_API_KEY,
        api_version=AZURE_OPENAI_API_VERSION,
        azure_endpoint=AZURE_OPENAI_ENDPOINT,
    )

    messages = []
    if system_prompt:
        messages.append({"role": "system", "content": system_prompt})
    if history_messages:
        messages.extend(history_messages)
    messages.append({"role": "user", "content": prompt})

    chat_completion = client.chat.completions.create(
        model=AZURE_OPENAI_DEPLOYMENT,  # model = "deployment_name".
        messages=messages,
        temperature=kwargs.get("temperature", 0),
        top_p=kwargs.get("top_p", 1),
        n=kwargs.get("n", 1),
    )
    return chat_completion.choices[0].message.content


async def embedding_func(texts: list[str]) -> np.ndarray:
    client = AzureOpenAI(
        api_key=AZURE_OPENAI_API_KEY,
        api_version=AZURE_EMBEDDING_API_VERSION,
        azure_endpoint=AZURE_OPENAI_ENDPOINT,
    )
    embedding = client.embeddings.create(model=AZURE_EMBEDDING_DEPLOYMENT, input=texts)

    embeddings = [item.embedding for item in embedding.data]
    return np.array(embeddings)


async def test_funcs():
    result = await llm_model_func("How are you?")
    print("Resposta do llm_model_func: ", result)

    result = await embedding_func(["How are you?"])
    print("Resultado do embedding_func: ", result.shape)
    print("Dimensão da embedding: ", result.shape[1])


asyncio.run(test_funcs())

embedding_dimension = 3072

rag = LightRAG(
    working_dir=WORKING_DIR,
    llm_model_func=llm_model_func,
    embedding_func=EmbeddingFunc(
        embedding_dim=embedding_dimension,
        max_token_size=8192,
        func=embedding_func,
    ),
)

book1 = open("./book_1.txt", encoding="utf-8")
book2 = open("./book_2.txt", encoding="utf-8")

rag.insert([book1.read(), book2.read()])


# Example function demonstrating the new query_with_separate_keyword_extraction usage
async def run_example():
    query = "What are the top themes in this story?"
    prompt = "Please simplify the response for a young audience."

    # Using the new method to ensure the keyword extraction is only applied to the query
    response = rag.query_with_separate_keyword_extraction(
        query=query,
        prompt=prompt,
        param=QueryParam(mode="hybrid"),  # Adjust QueryParam mode as necessary
    )

    print("Extracted Response:", response)


# Run the example asynchronously
if __name__ == "__main__":
    asyncio.run(run_example())