File size: 7,525 Bytes
92def50
fc091ae
92def50
fc091ae
92def50
fc091ae
 
 
92def50
fc091ae
 
92def50
 
 
 
fc091ae
 
 
 
 
92def50
fc091ae
 
24a98c3
15a45e2
24a98c3
 
 
 
 
 
15a45e2
24a98c3
 
 
fc091ae
 
 
 
92def50
 
 
 
 
 
 
 
 
 
 
 
 
fc091ae
 
24a98c3
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92def50
 
 
 
 
 
 
 
 
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a45e2
fc091ae
 
 
 
 
 
 
 
 
 
 
 
24a98c3
15a45e2
fc091ae
 
 
 
 
 
 
 
 
 
 
 
24a98c3
15a45e2
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15a45e2
fc091ae
 
 
 
 
 
 
 
 
4225cbd
24a98c3
 
15a45e2
24a98c3
 
 
 
 
 
15a45e2
24a98c3
 
fc091ae
 
 
 
 
 
 
24a98c3
fc091ae
24a98c3
4225cbd
 
 
fc091ae
 
 
 
 
24a98c3
fc091ae
 
 
15a45e2
fc091ae
24a98c3
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24a98c3
fc091ae
 
 
 
 
 
15a45e2
fc091ae
24a98c3
fc091ae
 
 
 
 
 
15a45e2
fc091ae
24a98c3
fc091ae
15a45e2
fc091ae
 
 
 
 
 
24a98c3
 
fc091ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24a98c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# Rerank Integration Guide

LightRAG supports reranking functionality to improve retrieval quality by re-ordering documents based on their relevance to the query. Reranking is now controlled per query via the `enable_rerank` parameter (default: True).

## Quick Start

### Environment Variables

Set these variables in your `.env` file or environment for rerank model configuration:

```bash
# Rerank model configuration (required when enable_rerank=True in queries)
RERANK_MODEL=BAAI/bge-reranker-v2-m3
RERANK_BINDING_HOST=https://api.your-provider.com/v1/rerank
RERANK_BINDING_API_KEY=your_api_key_here
```

### Programmatic Configuration

```python
from lightrag import LightRAG, QueryParam
from lightrag.rerank import custom_rerank, RerankModel

# Method 1: Using a custom rerank function with all settings included
async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
    return await custom_rerank(
        query=query,
        documents=documents,
        model="BAAI/bge-reranker-v2-m3",
        base_url="https://api.your-provider.com/v1/rerank",
        api_key="your_api_key_here",
        top_n=top_n or 10,  # Handle top_n within the function
        **kwargs
    )

rag = LightRAG(
    working_dir="./rag_storage",
    llm_model_func=your_llm_func,
    embedding_func=your_embedding_func,
    rerank_model_func=my_rerank_func,  # Configure rerank function
)

# Query with rerank enabled (default)
result = await rag.aquery(
    "your query",
    param=QueryParam(enable_rerank=True)  # Control rerank per query
)

# Query with rerank disabled
result = await rag.aquery(
    "your query",
    param=QueryParam(enable_rerank=False)
)

# Method 2: Using RerankModel wrapper
rerank_model = RerankModel(
    rerank_func=custom_rerank,
    kwargs={
        "model": "BAAI/bge-reranker-v2-m3",
        "base_url": "https://api.your-provider.com/v1/rerank",
        "api_key": "your_api_key_here",
    }
)

rag = LightRAG(
    working_dir="./rag_storage",
    llm_model_func=your_llm_func,
    embedding_func=your_embedding_func,
    rerank_model_func=rerank_model.rerank,
)

# Control rerank per query
result = await rag.aquery(
    "your query",
    param=QueryParam(
        enable_rerank=True,  # Enable rerank for this query
        chunk_top_k=5       # Number of chunks to keep after reranking
    )
)
```

## Supported Providers

### 1. Custom/Generic API (Recommended)

For Jina/Cohere compatible APIs:

```python
from lightrag.rerank import custom_rerank

# Your custom API endpoint
result = await custom_rerank(
    query="your query",
    documents=documents,
    model="BAAI/bge-reranker-v2-m3",
    base_url="https://api.your-provider.com/v1/rerank",
    api_key="your_api_key_here",
    top_n=10
)
```

### 2. Jina AI

```python
from lightrag.rerank import jina_rerank

result = await jina_rerank(
    query="your query",
    documents=documents,
    model="BAAI/bge-reranker-v2-m3",
    api_key="your_jina_api_key",
    top_n=10
)
```

### 3. Cohere

```python
from lightrag.rerank import cohere_rerank

result = await cohere_rerank(
    query="your query",
    documents=documents,
    model="rerank-english-v2.0",
    api_key="your_cohere_api_key",
    top_n=10
)
```

## Integration Points

Reranking is automatically applied at these key retrieval stages:

1. **Naive Mode**: After vector similarity search in `_get_vector_context`
2. **Local Mode**: After entity retrieval in `_get_node_data`
3. **Global Mode**: After relationship retrieval in `_get_edge_data`
4. **Hybrid/Mix Modes**: Applied to all relevant components

## Configuration Parameters

| Parameter | Type | Default | Description |
|-----------|------|---------|-------------|
| `enable_rerank` | bool | False | Enable/disable reranking |
| `rerank_model_func` | callable | None | Custom rerank function containing all configurations (model, API keys, top_n, etc.) |

## Example Usage

### Basic Usage

```python
import asyncio
from lightrag import LightRAG, QueryParam
from lightrag.llm.openai import gpt_4o_mini_complete, openai_embedding
from lightrag.kg.shared_storage import initialize_pipeline_status
from lightrag.rerank import jina_rerank

async def my_rerank_func(query: str, documents: list, top_n: int = None, **kwargs):
    """Custom rerank function with all settings included"""
    return await jina_rerank(
        query=query,
        documents=documents,
        model="BAAI/bge-reranker-v2-m3",
        api_key="your_jina_api_key_here",
        top_n=top_n or 10,  # Default top_n if not provided
        **kwargs
    )

async def main():
    # Initialize with rerank enabled
    rag = LightRAG(
        working_dir="./rag_storage",
        llm_model_func=gpt_4o_mini_complete,
        embedding_func=openai_embedding,
        rerank_model_func=my_rerank_func,
    )

    await rag.initialize_storages()
    await initialize_pipeline_status()

    # Insert documents
    await rag.ainsert([
        "Document 1 content...",
        "Document 2 content...",
    ])

    # Query with rerank (automatically applied)
    result = await rag.aquery(
        "Your question here",
        param=QueryParam(enable_rerank=True)  # This top_n is passed to rerank function
    )

    print(result)

asyncio.run(main())
```

### Direct Rerank Usage

```python
from lightrag.rerank import custom_rerank

async def test_rerank():
    documents = [
        {"content": "Text about topic A"},
        {"content": "Text about topic B"},
        {"content": "Text about topic C"},
    ]

    reranked = await custom_rerank(
        query="Tell me about topic A",
        documents=documents,
        model="BAAI/bge-reranker-v2-m3",
        base_url="https://api.your-provider.com/v1/rerank",
        api_key="your_api_key_here",
        top_n=2
    )

    for doc in reranked:
        print(f"Score: {doc.get('rerank_score')}, Content: {doc.get('content')}")
```

## Best Practices

1. **Self-Contained Functions**: Include all necessary configurations (API keys, models, top_n handling) within your rerank function
2. **Performance**: Use reranking selectively for better performance vs. quality tradeoff
3. **API Limits**: Monitor API usage and implement rate limiting within your rerank function
4. **Fallback**: Always handle rerank failures gracefully (returns original results)
5. **Top-n Handling**: Handle top_n parameter appropriately within your rerank function
6. **Cost Management**: Consider rerank API costs in your budget planning

## Troubleshooting

### Common Issues

1. **API Key Missing**: Ensure API keys are properly configured within your rerank function
2. **Network Issues**: Check API endpoints and network connectivity
3. **Model Errors**: Verify the rerank model name is supported by your API
4. **Document Format**: Ensure documents have `content` or `text` fields

### Debug Mode

Enable debug logging to see rerank operations:

```python
import logging
logging.getLogger("lightrag.rerank").setLevel(logging.DEBUG)
```

### Error Handling

The rerank integration includes automatic fallback:

```python
# If rerank fails, original documents are returned
# No exceptions are raised to the user
# Errors are logged for debugging
```

## API Compatibility

The generic rerank API expects this response format:

```json
{
  "results": [
    {
      "index": 0,
      "relevance_score": 0.95
    },
    {
      "index": 2,
      "relevance_score": 0.87
    }
  ]
}
```

This is compatible with:
- Jina AI Rerank API
- Cohere Rerank API
- Custom APIs following the same format