|
import os |
|
import asyncio |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.llm import gpt_4o_mini_complete, openai_embedding |
|
from lightrag.utils import EmbeddingFunc |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
|
|
|
|
WORKING_DIR = "./chromadb_test_dir" |
|
if not os.path.exists(WORKING_DIR): |
|
os.mkdir(WORKING_DIR) |
|
|
|
|
|
CHROMADB_HOST = os.environ.get("CHROMADB_HOST", "localhost") |
|
CHROMADB_PORT = int(os.environ.get("CHROMADB_PORT", 8000)) |
|
CHROMADB_AUTH_TOKEN = os.environ.get("CHROMADB_AUTH_TOKEN", "secret-token") |
|
CHROMADB_AUTH_PROVIDER = os.environ.get( |
|
"CHROMADB_AUTH_PROVIDER", "chromadb.auth.token_authn.TokenAuthClientProvider" |
|
) |
|
CHROMADB_AUTH_HEADER = os.environ.get("CHROMADB_AUTH_HEADER", "X-Chroma-Token") |
|
|
|
|
|
EMBEDDING_MODEL = os.environ.get("EMBEDDING_MODEL", "text-embedding-3-large") |
|
EMBEDDING_MAX_TOKEN_SIZE = int(os.environ.get("EMBEDDING_MAX_TOKEN_SIZE", 8192)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
return await openai_embedding( |
|
texts, |
|
model=EMBEDDING_MODEL, |
|
) |
|
|
|
|
|
async def get_embedding_dimension(): |
|
test_text = ["This is a test sentence."] |
|
embedding = await embedding_func(test_text) |
|
return embedding.shape[1] |
|
|
|
|
|
async def create_embedding_function_instance(): |
|
|
|
embedding_dimension = await get_embedding_dimension() |
|
|
|
return EmbeddingFunc( |
|
embedding_dim=embedding_dimension, |
|
max_token_size=EMBEDDING_MAX_TOKEN_SIZE, |
|
func=embedding_func, |
|
) |
|
|
|
|
|
async def initialize_rag(): |
|
embedding_func_instance = await create_embedding_function_instance() |
|
|
|
return LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=gpt_4o_mini_complete, |
|
embedding_func=embedding_func_instance, |
|
vector_storage="ChromaVectorDBStorage", |
|
log_level="DEBUG", |
|
embedding_batch_num=32, |
|
vector_db_storage_cls_kwargs={ |
|
"host": CHROMADB_HOST, |
|
"port": CHROMADB_PORT, |
|
"auth_token": CHROMADB_AUTH_TOKEN, |
|
"auth_provider": CHROMADB_AUTH_PROVIDER, |
|
"auth_header_name": CHROMADB_AUTH_HEADER, |
|
"collection_settings": { |
|
"hnsw:space": "cosine", |
|
"hnsw:construction_ef": 128, |
|
"hnsw:search_ef": 128, |
|
"hnsw:M": 16, |
|
"hnsw:batch_size": 100, |
|
"hnsw:sync_threshold": 1000, |
|
}, |
|
}, |
|
) |
|
|
|
|
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
|
|
|
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="naive")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="local")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="global")) |
|
) |
|
|
|
|
|
print( |
|
rag.query("What are the top themes in this story?", param=QueryParam(mode="hybrid")) |
|
) |
|
|