|
# LightRAG 多文档并发控制机制详解 |
|
|
|
LightRAG 在处理多个文档时采用了多层次的并发控制策略。本文将深入分析文档级别、chunk级别和LLM请求级别的并发控制机制,帮助您理解为什么会出现特定的并发行为。 |
|
|
|
## 概述 |
|
|
|
LightRAG 的并发控制分为三个层次: |
|
|
|
1. 文档级别并发:控制同时处理的文档数量 |
|
2. Chunk级别并发:控制单个文档内同时处理的chunk数量 |
|
3. LLM请求级别并发:控制全局LLM请求的并发数量 |
|
|
|
## 1. 文档级别并发控制 |
|
|
|
**控制参数**:`max_parallel_insert` |
|
|
|
文档级别的并发由 `max_parallel_insert` 参数控制,默认值为2。 |
|
|
|
```python |
|
# lightrag/lightrag.py |
|
max_parallel_insert: int = field(default=int(os.getenv("MAX_PARALLEL_INSERT", 2))) |
|
``` |
|
|
|
### 实现机制 |
|
|
|
在 `apipeline_process_enqueue_documents` 方法中,使用信号量控制文档并发: |
|
|
|
```python |
|
# lightrag/lightrag.py - apipeline_process_enqueue_documents方法 |
|
async def process_document( |
|
doc_id: str, |
|
status_doc: DocProcessingStatus, |
|
split_by_character: str | None, |
|
split_by_character_only: bool, |
|
pipeline_status: dict, |
|
pipeline_status_lock: asyncio.Lock, |
|
semaphore: asyncio.Semaphore, # 文档级别信号量 |
|
) -> None: |
|
"""Process single document""" |
|
async with semaphore: # 🔥 文档级别并发控制 |
|
# ... 处理单个文档的所有chunks |
|
|
|
# 创建文档级别信号量 |
|
semaphore = asyncio.Semaphore(self.max_parallel_insert) # 默认2 |
|
|
|
# 为每个文档创建处理任务 |
|
doc_tasks = [] |
|
for doc_id, status_doc in to_process_docs.items(): |
|
doc_tasks.append( |
|
process_document( |
|
doc_id, status_doc, split_by_character, split_by_character_only, |
|
pipeline_status, pipeline_status_lock, semaphore |
|
) |
|
) |
|
|
|
# 等待所有文档处理完成 |
|
await asyncio.gather(*doc_tasks) |
|
``` |
|
|
|
## 2. Chunk级别并发控制 |
|
|
|
**控制参数**:`llm_model_max_async` |
|
|
|
**关键点**:每个文档都会独立创建自己的chunk信号量! |
|
|
|
```python |
|
# lightrag/lightrag.py |
|
llm_model_max_async: int = field(default=int(os.getenv("MAX_ASYNC", 4))) |
|
``` |
|
|
|
### 实现机制 |
|
|
|
在 `extract_entities` 函数中,**每个文档独立创建**自己的chunk信号量: |
|
|
|
```python |
|
# lightrag/operate.py - extract_entities函数 |
|
async def extract_entities(chunks: dict[str, TextChunkSchema], global_config: dict[str, str], ...): |
|
# 🔥 关键:每个文档都会独立创建这个信号量! |
|
llm_model_max_async = global_config.get("llm_model_max_async", 4) |
|
semaphore = asyncio.Semaphore(llm_model_max_async) # 每个文档的chunk信号量 |
|
|
|
async def _process_with_semaphore(chunk): |
|
async with semaphore: # 🔥 文档内部的chunk并发控制 |
|
return await _process_single_content(chunk) |
|
|
|
# 为每个chunk创建任务 |
|
tasks = [] |
|
for c in ordered_chunks: |
|
task = asyncio.create_task(_process_with_semaphore(c)) |
|
tasks.append(task) |
|
|
|
# 等待所有chunk处理完成 |
|
done, pending = await asyncio.wait(tasks, return_when=asyncio.FIRST_EXCEPTION) |
|
chunk_results = [task.result() for task in tasks] |
|
return chunk_results |
|
``` |
|
|
|
### 重要推论:系统整体Chunk并发数 |
|
|
|
由于每个文档独立创建chunk信号量,系统理论上的chunk并发数是: |
|
|
|
**理论Chunk并发数 = max_parallel_insert × llm_model_max_async** |
|
|
|
例如: |
|
- `max_parallel_insert = 2`(同时处理2个文档) |
|
- `llm_model_max_async = 4`(每个文档最多4个chunk并发) |
|
- 理论结果:最多 2 × 4 = 8个chunk同时处于"处理中"状态 |
|
|
|
## 3. LLM请求级别并发控制(真正的瓶颈) |
|
|
|
**控制参数**:`llm_model_max_async`(全局共享) |
|
|
|
**关键**:尽管可能有8个chunk在"处理中",但所有LLM请求共享同一个全局优先级队列! |
|
|
|
```python |
|
# lightrag/lightrag.py - __post_init__方法 |
|
self.llm_model_func = priority_limit_async_func_call(self.llm_model_max_async)( |
|
partial( |
|
self.llm_model_func, |
|
hashing_kv=hashing_kv, |
|
**self.llm_model_kwargs, |
|
) |
|
) |
|
# 🔥 全局LLM队列大小 = llm_model_max_async = 4 |
|
``` |
|
|
|
### 优先级队列实现 |
|
|
|
```python |
|
# lightrag/utils.py - priority_limit_async_func_call函数 |
|
def priority_limit_async_func_call(max_size: int, max_queue_size: int = 1000): |
|
def final_decro(func): |
|
queue = asyncio.PriorityQueue(maxsize=max_queue_size) |
|
tasks = set() |
|
|
|
async def worker(): |
|
"""Worker that processes tasks in the priority queue""" |
|
while not shutdown_event.is_set(): |
|
try: |
|
priority, count, future, args, kwargs = await asyncio.wait_for(queue.get(), timeout=1.0) |
|
result = await func(*args, **kwargs) # 🔥 实际LLM调用 |
|
if not future.done(): |
|
future.set_result(result) |
|
except Exception as e: |
|
# 错误处理... |
|
finally: |
|
queue.task_done() |
|
|
|
# 🔥 创建固定数量的worker(max_size个),这是真正的并发限制 |
|
for _ in range(max_size): |
|
task = asyncio.create_task(worker()) |
|
tasks.add(task) |
|
``` |
|
|
|
## 4. Chunk内部处理机制(串行) |
|
|
|
### 为什么是串行? |
|
|
|
每个chunk内部的处理严格按照以下顺序串行执行: |
|
|
|
```python |
|
# lightrag/operate.py - _process_single_content函数 |
|
async def _process_single_content(chunk_key_dp: tuple[str, TextChunkSchema]): |
|
# 步骤1:初始实体提取 |
|
hint_prompt = entity_extract_prompt.format(**{**context_base, "input_text": content}) |
|
final_result = await use_llm_func_with_cache(hint_prompt, use_llm_func, ...) |
|
|
|
# 处理初始提取结果 |
|
maybe_nodes, maybe_edges = await _process_extraction_result(final_result, chunk_key, file_path) |
|
|
|
# 步骤2:Gleaning(深挖)阶段 |
|
for now_glean_index in range(entity_extract_max_gleaning): |
|
# 🔥 串行等待gleaning结果 |
|
glean_result = await use_llm_func_with_cache( |
|
continue_prompt, use_llm_func, |
|
llm_response_cache=llm_response_cache, |
|
history_messages=history, cache_type="extract" |
|
) |
|
|
|
# 处理gleaning结果 |
|
glean_nodes, glean_edges = await _process_extraction_result(glean_result, chunk_key, file_path) |
|
|
|
# 合并结果... |
|
|
|
# 步骤3:判断是否继续循环 |
|
if now_glean_index == entity_extract_max_gleaning - 1: |
|
break |
|
|
|
# 🔥 串行等待循环判断结果 |
|
if_loop_result = await use_llm_func_with_cache( |
|
if_loop_prompt, use_llm_func, |
|
llm_response_cache=llm_response_cache, |
|
history_messages=history, cache_type="extract" |
|
) |
|
|
|
if if_loop_result.strip().strip('"').strip("'").lower() != "yes": |
|
break |
|
|
|
return maybe_nodes, maybe_edges |
|
``` |
|
|
|
## 5. 完整的并发层次图 |
|
 |
|
|
|
|
|
## 6. 实际运行场景分析 |
|
|
|
### 场景1:单文档多Chunk |
|
假设有1个文档,包含6个chunks: |
|
|
|
- 文档级别:只有1个文档,不受 `max_parallel_insert` 限制 |
|
- Chunk级别:最多4个chunks同时处理(受 `llm_model_max_async=4` 限制) |
|
- LLM级别:全局最多4个LLM请求并发 |
|
|
|
**预期行为**:4个chunks并发处理,剩余2个chunks等待。 |
|
|
|
### 场景2:多文档多Chunk |
|
假设有3个文档,每个文档包含10个chunks: |
|
|
|
- 文档级别:最多2个文档同时处理 |
|
- Chunk级别:每个文档最多4个chunks同时处理 |
|
- 理论Chunk并发:2 × 4 = 8个chunks同时处理 |
|
- 实际LLM并发:只有4个LLM请求真正执行 |
|
|
|
**实际状态分布**: |
|
``` |
|
# 可能的系统状态: |
|
文档1: 4个chunks"处理中"(其中2个在执行LLM,2个在等待LLM响应) |
|
文档2: 4个chunks"处理中"(其中2个在执行LLM,2个在等待LLM响应) |
|
文档3: 等待文档级别信号量 |
|
|
|
总计: |
|
- 8个chunks处于"处理中"状态 |
|
- 4个LLM请求真正执行 |
|
- 4个chunks等待LLM响应 |
|
``` |
|
|
|
## 7. 性能优化建议 |
|
|
|
### 理解瓶颈 |
|
|
|
**真正的瓶颈是全局LLM队列,而不是chunk信号量!** |
|
|
|
### 调整策略 |
|
|
|
**策略1:提高LLM并发能力** |
|
|
|
```bash |
|
# 环境变量配置 |
|
export MAX_PARALLEL_INSERT=2 # 保持文档并发 |
|
export MAX_ASYNC=8 # 🔥 增加LLM请求并发数 |
|
``` |
|
|
|
**策略2:平衡文档和LLM并发** |
|
|
|
```python |
|
rag = LightRAG( |
|
max_parallel_insert=3, # 适度增加文档并发 |
|
llm_model_max_async=12, # 大幅增加LLM并发 |
|
entity_extract_max_gleaning=0, # 减少chunk内串行步骤 |
|
) |
|
``` |
|
|
|
## 8. 总结 |
|
|
|
LightRAG的多文档并发处理机制的关键特点: |
|
|
|
### 并发层次 |
|
1. **文档间争抢**:受 `max_parallel_insert` 控制,默认2个文档并发 |
|
2. **理论Chunk并发**:每个文档独立创建信号量,总数 = `max_parallel_insert × llm_model_max_async` |
|
3. **实际LLM并发**:所有chunk共享全局LLM队列,受 `llm_model_max_async` 控制 |
|
4. **单Chunk内串行**:每个chunk内的多个LLM请求严格串行执行 |
|
|
|
### 关键洞察 |
|
- **理论vs实际**:系统可能有很多chunk在"处理中",但只有少数在真正执行LLM请求 |
|
- **真正瓶颈**:全局LLM请求队列是性能瓶颈,而不是chunk信号量 |
|
- **优化重点**:提高 `llm_model_max_async` 比增加 `max_parallel_insert` 更有效 |
|
|