|
import os |
|
import logging |
|
import asyncio |
|
import numpy as np |
|
|
|
from dotenv import load_dotenv |
|
from sentence_transformers import SentenceTransformer |
|
|
|
from openai import AzureOpenAI |
|
from lightrag import LightRAG, QueryParam |
|
from lightrag.utils import EmbeddingFunc |
|
from lightrag.kg.shared_storage import initialize_pipeline_status |
|
|
|
WORKING_DIR = "./dickens" |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
load_dotenv() |
|
AZURE_OPENAI_API_VERSION = os.getenv("AZURE_OPENAI_API_VERSION") |
|
AZURE_OPENAI_DEPLOYMENT = os.getenv("AZURE_OPENAI_DEPLOYMENT") |
|
AZURE_OPENAI_API_KEY = os.getenv("AZURE_OPENAI_API_KEY") |
|
AZURE_OPENAI_ENDPOINT = os.getenv("AZURE_OPENAI_ENDPOINT") |
|
|
|
|
|
async def llm_model_func( |
|
prompt, system_prompt=None, history_messages=[], keyword_extraction=False, **kwargs |
|
) -> str: |
|
|
|
client = AzureOpenAI( |
|
api_key=AZURE_OPENAI_API_KEY, |
|
api_version=AZURE_OPENAI_API_VERSION, |
|
azure_endpoint=AZURE_OPENAI_ENDPOINT, |
|
) |
|
|
|
|
|
messages = [] |
|
if system_prompt: |
|
messages.append({"role": "system", "content": system_prompt}) |
|
if history_messages: |
|
messages.extend(history_messages) |
|
messages.append({"role": "user", "content": prompt}) |
|
|
|
|
|
chat_completion = client.chat.completions.create( |
|
model=AZURE_OPENAI_DEPLOYMENT, |
|
messages=messages, |
|
temperature=kwargs.get("temperature", 0), |
|
top_p=kwargs.get("top_p", 1), |
|
n=kwargs.get("n", 1), |
|
) |
|
|
|
return chat_completion.choices[0].message.content |
|
|
|
|
|
async def embedding_func(texts: list[str]) -> np.ndarray: |
|
model = SentenceTransformer("all-MiniLM-L6-v2") |
|
embeddings = model.encode(texts, convert_to_numpy=True) |
|
return embeddings |
|
|
|
|
|
async def initialize_rag(): |
|
rag = LightRAG( |
|
working_dir=WORKING_DIR, |
|
llm_model_func=llm_model_func, |
|
embedding_func=EmbeddingFunc( |
|
embedding_dim=384, |
|
max_token_size=8192, |
|
func=embedding_func, |
|
), |
|
vector_storage="FaissVectorDBStorage", |
|
vector_db_storage_cls_kwargs={ |
|
"cosine_better_than_threshold": 0.2 |
|
}, |
|
) |
|
|
|
await rag.initialize_storages() |
|
await initialize_pipeline_status() |
|
|
|
return rag |
|
|
|
|
|
def main(): |
|
|
|
rag = asyncio.run(initialize_rag()) |
|
|
|
book1 = open("./book_1.txt", encoding="utf-8") |
|
book2 = open("./book_2.txt", encoding="utf-8") |
|
|
|
rag.insert([book1.read(), book2.read()]) |
|
|
|
query_text = "What are the main themes?" |
|
|
|
print("Result (Naive):") |
|
print(rag.query(query_text, param=QueryParam(mode="naive"))) |
|
|
|
print("\nResult (Local):") |
|
print(rag.query(query_text, param=QueryParam(mode="local"))) |
|
|
|
print("\nResult (Global):") |
|
print(rag.query(query_text, param=QueryParam(mode="global"))) |
|
|
|
print("\nResult (Hybrid):") |
|
print(rag.query(query_text, param=QueryParam(mode="hybrid"))) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|